AFIT/GSO/ENY/99M-09

ANTI-BALLISTIC MISSILE LASER PREDICTIVE
AVOIDANCE OF SATELLITES:

THEORY AND SOFTWARE FOR
REAL-TIME PROCESSING AND DECONFLICTION
OF SATELLITE EPHEMERIDES
WITH A MOVING PLATFORM LASER

THESIS
(Book 1 of 2)

David J. Vloedman, Captain, USAF

AFIT/GSO/ENY/99M-09

Approved for public release; distribution unlimited

DTIC OUALITY INCFECTED & 1 9 9 9 0 4 0 9 0 5 6

The views expressed in this thesis are those of the author,
and do not reflect the official policy or position of the
Department of Defense, or the U.S. Government

AFIT/GSO/ENY/99M-09

ANTI-BALLISTIC MISSILE LASER PREDICTIVE AVOIDANCE OF SATELLITES:
THEORY AND SOFTWARE FOR
REAL-TIME PROCESSING AND DECONFLICTION OF

SATELLITE EPHEMERIDES WITH A MOVING PLATFORM LASER
THESIS

Presented to the Faculty of the
Graduate School of Aeronautical and Astronautical Engineering
of the Air For'ce Institute of Technology
Air University
Air Education and Training Command
In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Space Operations

David J. Vloedman, B.S.

Captain, USAF

March 1999

Approved for public release; distribution unlimited

AFIT/GSO/ENY/99M-09

ANTI-BALLISTIC MISSILE LASER PREDICTIVE AVOIDANCE OF SATELLITES:
THEORY AND SOFTWARE FOR
REAL-TIME PROCESSING AND DECONFLICTION OF
SATELLITE EPHEMERIDES WITH A MOVING PLATFORM LASER

David J. Vloedman, B.S.
Captain, USAF

Approved:
/ (7 / -
(Z//%W\ (Z& /) e P D U7
Dr. William E. Wiesel (Committee Chairman) Date
74/107\)4‘5‘),01—\1 .)‘#% & Meer 1 7
Maj Montéomery C. Hughson (Committee Member) Date
Y [lar ZF
Capt Gregory Agnes (Committee Member) Date

Date

Acknowledgments

I would first like to thank my faculty advisor, Dr. William E.Wiesel, without
whom this thesis would not exist. His knowledge and insight in the topics addressed in
this thesis were critical to its formulation and conclusion in a timely manner. His time
and experience were very much appreciated. I would also like to thank LtCol Glen P.
Perram for his willingness to share his expertise in the area of laser propagation, which
saved me many hours of independent research.

I would also like to thank my sponsors Rich Flanders and Bob Sendek working in
the BMCA4I IPT at Boeing’s ABL Program office. Their support and patience has
allowed this research to have a practical application within the ABL project. It is hoped
that this thesis will benefit them as much as it has myself.

I am indebted to the many officers and civilian personnel of the Air Force
Research Labs Directed Energy Program office for allowing me to attend some of the
meetings concerning Predictive Avoidance and for answering my questions.

Finally, and most importantly, I would like to thank my wife, Juli, for the many
hours she spent alone while I formulated this research. Her unfailing love, faithfulness
and unconditional support are the truly exceptional qualities that formed the foundation

this work was built on.

David J. Vloedman

ii

Table of Contents

Page

Acknowledgments. e ii
List of Figuresot e e viii
Listof Tablest e e e Xi
ADSITACt . . oo e xii
I. Introduction. e 1
ABL Strategy. . ..o ov it e 1

Laser Systems.o i it e 1

The Predictive Avoidance Concept.ccovvuinen... 1

Predictive Avoidance Strategy., 3

The Goalof ThisStudyo 4
Method of Attack e 5

IL. ABLPA Preprocessor Methodology 7
LocatingthePlatform i i ... 7
Finding Og...... ... 8

The ECEFFrame........ i, 8

The ECIFrame i, 8

Frame Conversionttt iinniinnenn... 9

Absolute TImeooin i i i 9

Sample 6, Calculation, 11

ACCUTACY . ottt e e 13

Finding the Platform inthe ECIFrame 14
Locatingthe Satellite i, 15
UseofaTimePropagator........... 16
Comparison of Satellite to Platform Position Vector 17
Evaluating Time-to-Rise o .. 18
Ephemeris CLipping oottt i e 19
Runlntervals.......... i, 20

Ephemeris Clipping Algorithm 20

FindingBeta......... i, 22

Resolution of the Satellite Critical Radius 27

Visibility of the Satellite i 29
Checking Time-to-Rise of the Satellite 31
Preprocessor Methodology Conclusion 32

il

I

IV.

Page

ABLPA Main Processor Methodology. 34
Targeting the Satellite i 34
The RENFrame, 34
Determining Laser Position inthe REN Frame 37
Position Error oo e 38
Platform Position Error. i i 38
Satellite Position Error 40
Missile Position Error. o i 41

Laser Diffraction Errors i i 43
Laser Intrinsic Spread Error. o L. 44
Optical Diffraction and Beam Divergence 44

Other Error Considerations e 46
Error Budget Consolidation, 47
Finding the Current Separation Angle. 50
Forecasting the Separation Angle o il 50
Finding the Rate of Change of the Separation Angle 51
Finding the Acceleration of the Separation Angle 53

The Forecast Method it 57
Accuracy of the Forecast Method 59
Interpolation to Correct the Forecast. iut. 63
Interpolation Time Buffer.......... 64
Interpolation Step Size il 66

Main Processor Methodology Conclusion oo, 69
Software Development.70
Modularity and Testing ovite ittt e e e e 71
The Calculation Modules, 72
The Test Modules for Each Software Library. 73
The Environment i 73
Sample Interfaces. 74
Final Analysis and Conclusions. 76
Software Analysis and Performance 76
Integrationand Testing, 77
Preprocessor Software Filtering Performance 77
Preprocessor Software Timing Performance 78

Main Processor Software Filtering Performance 78

Main Processor Software Timing Performance 79

V. Final Analysis and Conclusions (cont.)

Further Study. 80
Missile Trackingot 80
Atmospheric Refraction.81
Error Angle Determination i, 82
Forecast/Interpolation Fine Tuning. 82
Software Speed and Testing it 83

ConCIUSION . . vt e 84
Appendix A. The Software Structure 85

Modularity and Testingt 85

The Calculation Modules, 87

The Test Modules for Each Software Library. 87

The Environment oottt ittt et i e e 88

TestModule Example i i 88

Descriptionof Codeo i 90

Code Listing for SGP4TestForm, 91

Error Handling R 95
Appendix B. ABLPA Preprocessor Software Implementation.............. 96
Preprocessor Modular Format 97
TheCore Modules . ..ottt e 99
Aircrafth. 99
Satellite.h 101
LaserConstants.h........ i 103

The Error Structure Library oot 105
AddError. ... e 106
GrabErmor. e 106
CreateDisplayTextottt 106

The ErrorStructure.h Header File 107

The SGP4 Support Library o o i 110
CallSGP4 e 111

The SGP4SupportModules.h HeaderFile 112

The Time Module Libraryt 114
ConvertCalenderToJulian 115
ConvertJulianToCalender, 115

The TimeModulesh HeaderFile 116

The TLEInputLibrary i 119
ReadTLEFile.t i i 120

The TLEInputhHeaderFile 120

Appendix B. ABLPA Preprocessor Software Implementation (cont)

The Evaluate Ephemeris Library 122
EvaluateEphemeris o i i 123
CompareOrbit 125
FindThetaGo i 126
The EvaluateEphemerisModules.h Header File 128

The ABLPA Preprocessor.c.vuiiiiiiiiininnnnennnn. 133

Inputs . ..o 134
OULPULS .« . ottt e 136
The PAPreprocessorh HeaderFile 137
Appendix C. ABLPA Main Processor Software Implementation 139

Main Processor Modular Format. ool 140

The Target Platform Library. o i it 142
TargetPlatform. 143
The TargetPlatform.h HeaderFile. 146

The Target Laser Library. oo, e 150

Targetlaser. e 150
The TargetLaserh Header File. 152

The Target Satellite Library. i 155
TargetSatellite.oovvennn... J 158
The TargetSatellite.h Header File. 159

The Find Displacement Angle Modules Library. 162
FindDisplacementAngles. i, 163
FindErrorAngle.ottt i e 167
FindSeparationAngle. i il 168
The FindDisplacementAngleModules.h Header File. 171

The Process Satellite Library i 178

ProcessSatellite. 179
InterpolateVertex. i 182
FindDisplacementAnglesAgain. 184
TargetPlatformAgain. i 187
The ProcessSatellite.h Header File. 191

The ABLPA Main Processor., 196
PAMainProcessor.t e 197
Inputs. e 197
OUtpULS. . .o e 200
The PAMainProcessor.h Header File. 201

vi

Appendix D. ImplementationCode 205
ARTCTaft.CPD o oot e 205
ErrorStructure.Cpp « - ¢« oo et 209
EvaluateEphemerisModules.cpp oo 214

'FindDisplacementAngleModules.cppl 237
PAMaAINPIOCESSOT.CPP « « -« v vv e e ti e it ittt 252
PAPIEPIOCESSOI.CPP « « + vttt e e eie e aiaa e a e eaennas 259
ProcessSatellite.Ccpp« oot 264
St CPP « « o v et e 293
SGP4SupportModules.cppo ii i 299
TargetlaSer.CPP -« « oo v ee ettt 303
TargetPlatform.cpp ..ot e 308
TargetSatellite.Cpp . . . oo oot 317
TimeModules.Cpp . . .« oo cv vt e 325
TLEINPULCDD « « vttt ettt ittt et 329

AppendixE. TestModuleCode, 336
EvaluateEphemerisForm.cpp.o oo 336
FindDisplacementAngleForm.cpp. i 343
MainProcessorForm.cpp.o oot 350
PAPreprocessOrFOIm.CPP. . .« vt ivi ittt 355
ProcessSatelliteForm.cpp. 359
SGPATEStFOIMCPP. « « « v vt ve ettt et ettt 366
TargetPlatformForm.cppoviii i 371
TargetSatelliteForm.cpp. o ii i 376
TestTargetLaserForm.cpp.ot 384
TestTIMEFOIMLCPP. « « v ot et ettt ettt ettt 387
TLETeStFOrm.Cpp. .« o oottt 390
TestErrorStructure.cpp (Non-Graphical Interface) 394

Appendix F. Sample Two Line Element (TLE) File Format. 396

Bibliography. 399

VA, e e 400

vii

Figure
2.1
22
2.3
24
2.5
2.6
2.7
2.8
29
2.10
3.1
32
3.3

34

3.5
3.6
3.7

3.8

3.9

3.10

List of Figures

Page
Locating the Platform inthe ECEF Frame 14
Ilustration of the Comparison Between Randr.................... 17
Ephemeris Clipping lllustration19
Preprocessor Spherical Geometry Illustration 21
Northern Hemjsphe;re Prograde OrbitCases 22
Northern Hemisphere Retrograde Orbit Cases 23
Southern Hemisphere Prograde Orbit Cases 24
Southern Hemisphere Retrograde Orbit Cases 25
Comparison of Satellite Radius with the Critical Radius 29
Vectors Used to Approximate Rise Time 31
Derivation of p in ECI Frame With Respect to the REN Frame 35
Laser Positioninthe RENFrame 37

Computing the Error Angle Contributed By Platform Position Error 39

Iustration of the Error Angle Introduced by

Uncertain Missile Position 42
Exaggerated Divergence of a Highly Focused Beam. 47
Ilustration of the Separation Angle. 50
Illustration of a Satellite “Intersection” 57

Comparing the Actual Separation Angle Encountered in a
Close Approach With the Forecasted Separation Angle 60

Illustration of Forecasted Angle Deviation From Actual Angle
ina“Far Away” Satellite 62

Typical Early Vertex Forecast with a Two Second Interpolation Buffer . .63

viii

3.12
3.13
4.1
42
43
Al
A2
B.1
B.2
B.3
B.4
B.5
B.6
B.7
C.1
c2
C.3
C4
C5

C.6

Special Case Forecast Where Forecast Vertex Falls After

Actual Vertex inTimet 65
Interpolation With a Step Size thatis TooLarge 67
Decreasing Step Size Increases Precision oot 68
The Predictive Avoidance Software Flow 71
GUI Interface to the Preprocessor.ooviiiniinninneennnn, 74
GUI Interface to the Main Processor, 75
The Predictive Avoidance Software Flow 86
GUI Interface to “SGP4 Support” Project EEERERS -89
Where the ABLPA Preprocessor Fits in the Software Hierarchy96
ABLPA Preprocessor Calling Tree. e e 97
Testing GUI Used to Access CallSGP4.oovueneiniienen... 110
Graphical Interface Developed for Testing the Time Modules 114
Graphical Interface Developed for Testing the ReadTLEFile 119
Graphical Interface Used to Test EvaluateEphemeris L1220
The Graphical Interface to the Preprocessor 133
Where the ABLPA Preprocessor Fits in the Software Hierarchy 139
ABLPA Main Processor CallingTreeot 140
The Graphical Interface Used to Test TargetPlatform 143
GUI Used to Run and Test TargetLaser.t 150
Graphical Interface for TargetSatellite 155
GUI Used to Run and Test FindDisplacementAngles Module 162

ix

Figure
C.7

C38

GUI Used to Run and Test ProcessSatellite Module

The Graphical Interface Developed to Run the Main Processor

.........

Table

1.1

2.1

22

23

24

3.1

3.2

B.1

C.1

F.1

F.2

List of Tables

Page
The Lasers Aboard the ABL Platform............................. 2
A Summary of Twelve Geometric Cases for Finding............... 26
The True Relationship Between B, o, andi...................... ..26
Resolution of Quadrant Ambiguities 28
Possible Outcomes of Check to See if Satellite is Visible............. 30
Error Budget for Predictive Avoidance Using the
High Energy Laser (HEL) with a Wavelength of 1.315um.. 48
The Meanings of the Quadratic Roots forAt....................... 59
The Six Libraries Composing the ABLPA Preprocessor. 98
The Six Libraries Composing the ABLPA Main Processor 141
Formatof Card 1....... i i 397
Formatof Card2..... i 398

Xi

AFIT/GSO/ENY/99M-09

Abstract

The Anti-Ballistic missile Laser (ABL) Project is committed to defense against
attack from enemy-launched Theater Ballistic Missiles using an airborne laser platform to
disable an enemy missile in the boost phase of launch. Wielding a laser of this power and
scope requires that no collateral damage be caused by laser energy which may escape
from the theater of engagement. The most likely track of such a laser would pose a

significant threat to space-based assets.

The Predictive Avoidance algorithm is designed to predict the path of a given
laser firing sequence, and perform real-time forecasting of, and deconfliction with, the
ephemerides of a given set of satellites. The primary goal is to establish the theoretical
framework of this algorithm. The secondary goal of this thesis is to develop a modular
software package that can, with minor modiﬁcatiqns, be incorporated into the fire-control
systerﬁ of ABL to perform real-time forecasting within given time and error budgets.
This software takes the form of a Preprocessor, that filters the active satellites to
determine which satellites are in view, and the Main Processor, which analyzes the
satellites that are in view. The Main Processor determines whether any of the satellites in

view will intersect the laser beam while it is illuminating a target.

xii

ANTI-BALLISTIC MISSILE LASER PREDICTIVE AVOIDANCE OF SATELLITES:
THEORY AND SOFTWARE FOR
REAL-TIME PROCESSING AND DECONFLICTION OF
SATELLITE EPHEMERIDES WITH A MOVING PLATFORM LASER

l. Introduction

The Anti-Ballistic missile Laser (ABL) Project is committed to defense of the
United States and its allies against attack from enemy-launched Theater Ballistic Missiles
(TBMs). The ABL is a system which, when deployed, will be housed in a Boeing 747-
400F airframe. It will fly at a cruising altitude of roughly 12.9 km (Forden, Sept 97),
above most cloud cover. From this altitude, it will acquire target missiles through an
active tracking system, attempting to destroy the missile in its boost stage, where it is

most vulnerable.

1.1 ABL Strategy

The ABL will fly above the cloud deck, and will most likely travel in an
elongated figure-eight flight path. The long axis of the figure-eight will be perpendicular
to the expected direction of the missile launch, to ensure the smallest focal radius to the

possible targets for a given period of time.

1.1.1 Laser Systems

The ABL will actually be comprised of four independent laser systems. The first
of these systems, the Active Ranging System (ARS) laser, is a frequency modulated
continuous-wave carbon dioxide laser. It operates at a relatively low power (200 Watts)

at a wavelength of approximately 11.15 pm. Its purpose is solely to actively scan for a

target. The second laser, the Track ILIuminator Laser (TILL) is a kilowatt-class Yb:Yag
laser estimated to operate at a wavelength of approximately 1.03 micrometers. After a
target has been locatéd with the ARS, it will be illuminated with the TILL to begin active
tracking of the target. The third laser system, the Beacon ILluminator Laser (BILL) is
also a kilowatt-class laser system. It will be composed of a Nd:Yag laser with a
wavelength of approximately 1.06 micrometers. Shortly after the TILL has begun active
tracking of the Theater Ballistic Missile (TBM), the BILL will be turned on and will be
used to provide real-time data to an atmospheric compensation system designed to
compensate for atmospheric turbulence. After the BILL has been trained and locked onto
the TBM, the final laser will be fired. This ﬁhal laser, the High Energy Laser (HEL), is a
Chemical Oxygen-lodine Laser (COIL) that will operate at a wavelength of
approximately 1.315 micrometers (Forden, Sept 97). Its power is estimated by the author

to be between 1-3 Megawatts.

Table 1.1 The Lasers Aboard the ABL Platform

Device Wavelength Power Pulse Type Aperture Size
ARS - 11.15 um 200w FM CW 8 inches
TILL 1.03 um KW class 5 KHz, 50 nsec 30 cm
BILL 1.06 um KW class 7.5 KHz, 50 nsec 30 cm
HEL 1.315 pm 1-3 MW CcwW 150 cm

1.1.2 The Predictive Avoidance Concept

During the course of a mission, laser energy will almost certainly escape from the
target area. The lasers of the ABL are designed for long-distance propagation, being
focused in a fairly narrow beam. This means that even at great distances, escaping
energy from these lasers may pose a threat to any inadvertent targets that stray into the
line of fire, perhaps far downrange of the targeted missile. The exception to this rule is
the ARS, which is a fairly low power laser that will attenuate quickly within the
atmosphere. For this reason, the ARS is not considered when assessing a threat to
inadvertent targets. The TILL, BILL and especially the HEL, however, are considered to
be potentially dangerous to downrange assets. But what assets are threatened? The ABL
will almost certainly be firing above the artificial horizon of the aircraft, because of the
nature of the target being acquired. 'fherefore ground assets and aircraft are not at great
risk. However, satellites are at risk. They can conceivably be at any point in the sky, and
can be extrerﬁely sensitive to radiation emanating from an Earth-ward direction. Of
particular interest are Low-Earth Orbiting (LEO) satellites and manned platforms that
have sensors pointed towards the Earth. At LEO altitudes the lasers aboard the ABL can
certainly damage these sensitive assets. The concept of Predictive Avoidance (PA) is to
develop a strategy whereby the targeted missile is destroyed, while all downrange

satellites are spared from potentially harmful laser radiation.

1.1.3 Predictive Avoidance Strategy

The Beam Control/Fire Control (BC/FC) system within the ABL platform is a

computer that controls the tracking and firing of the ABL’s four lasers. Among the many

tasks of the BC/FC is to pass all commands given by the user of the system through an
“engagement filter”, which, among other things, can inhibit the firing sequence if a
dangerous situation (such as a satellite passing through the lazing arc) is detected
(Leonard, 1998). The task, therefore, is to construct a piece of software that can monitor
the locations of satellites and provide satellite/laser deconfliction information directly to
the BC/FC system. This “Predictive Avoidance Software Package” (PASP) could then
be run just prior to engaging a missile to ensure that no satellites are forecasted to fall

within the laser’s path.

1.2 The Goal of This Study

The primary thrust of this thesis is to construct a reliable real-time predictive
avoidance algorithm that uses inputs as they would exist in the operational environment
of the ABL platform and generates outputs that directly communicate the probability of
lazing a satellite during a given mission with known mission parameters. A second goal
of this study is to produce a software package that runs this predictive avoidance
algorithm in real-time. This software package is designed with three conflicting (but
important) objectives. The first objective is to make the software readily understandable
to a person who wishes to study it in the future. This software is designed with an
agreement by Boeing that it will be studied and at least partially incorporated directly into
the BC/FC of the ABL platform. Therefore, io ensure a smooth incorporation into ABL,
the software will be as clear and non-ambiguous as possible. The second goal is that the
software be fast. It is estimated that the predictive avoidance software should not need
more than 0.5 seconds to fully process a mission. Therefore, strategies must be taken to

minimize processing time. The third major goal for the PA software is that it should be
4

modular. There are a number of methods that are used within this software that may
become obsolete or deemed inaccurate by ABL engineers. While this is not an aspiration
for this software, it would be foolish to not plan for this contingency. Therefore the
components of this software package should be highly granular. That is, the tasks should
be divided into as small of chunks as possible. It should also have clean, strongly defined
interfaces between those modules. Of these three goals for the software,
understandability is the most important. There are many cases within the software in
which a fluid, slow, understandable implementation has been used instead of a speedier
vague implementation. This is done with the understanding that the software will be
reviewed at a later time, when any ‘“slow” algorithms may be supplanted with the

software engineer’s choice of implementations.

1.3 Method of Attack

The method that will be used here to solve the Predictive Avoidance problem is to
split the task into two smaller tasks, which we shall call the Anti-Ballistic missile
Laser/Predictive Avoidance (ABLPA) Preprocessor, and the ABLPA Main Processor.
The ABLPA Preprocessor will handle the task of dissecting the list of satellite objects
provided by US Space Command, and determining which of these objects are in view of
the platform during the operational employment of the laser. The ABL Main Processor,
on the other hand, will have the task of analyzing the “short” list of satellite objects in
view (determined by the Preprocessor), and performing real-time calculations to compare
the arc of the laser with the path of the satellite. It will be the Main Processor that is
executed during the fire-sequence of ABL to determine in real-time the probability of

accidentally lazing a satellite. The reason that the PA task has been split in this way is
5

fairly straightforward. The Main Processor must execute its task in as little time as
possible, because it is run as part of the BC/FC sequence, which must rapidly acquire,
track and laze the ballistic missile target. If there are fewer targets to process in the Main

Processor sequence, it will execute more quickly.

Il. ABLPA Preprocessor Methodology

As mentioned previously, in order to save as much time as possible within the
main processor, it is necessary to limit the number of satellites that are processed. The
preprocessor filters satellite ephemerides to find only those satellites that may possibly be
within the range of the laser platform for a specified time. This is accomplished in two
separate tasks. In the first task, the preprocessor must locate the satellite at the current
local time, and determine whether or not the satellite is currently in view. This is done
with the help of an ephemeris time propagator, Satellite General Perturbations propagator
(SGP4) developed by Air Force Space Command to trackv orbiting objects. The second
task involves determining when (if ever) the satellite will come into view of the platform.
This second task is only needed if the satellite is not in view. For insténce, The ABLPA
Preprocessor will be executed at regular intervals, but the possibility exists that a satellite
may fly into view of the platform after the Preprocessor executes but before the next
execution. If so, this satellite must also be included on the “short” list of objects fed to
the Main Processor. These two tasks, and the methods by which they are resolved, are

the focus of this chapter.

2.1 Locating the Platform

The ﬁrst. step in finding the locatioﬁ of | the satellite with respect to the ABL
platform is to determine where the platform is, and in what coordinate frame its position
is known. In general, we can expect to receive the platform’s position in terms of latitude
(8), longitude (A), and altitude (h). This frame of reference is Earth Centered Earth Fixed

(ECEF), and rotates with the Earth. Unfortunately, this method of reference does not

7

lend itself easily to fixing a position with respect to a satellite, whose coordinates are
most often given in the Earth-Centered/Inertial (ECI) coordinate frame. Therefore a way
must be found to transfer the platform’s position vector from the ECEF frame to the ECI

frame.

2.2 Finding 6,

Let the value, Og, represent the true angle between the Greenwich Meridian (that
“moves” with the Earth) and the Vernal Equinox, or First Point of Aries, which is a point
relatively “fixed” in the heavens. This value is important because it provides the rotation

angle between the ECEF coordinate frame and the ECI frame.

2.2.1 The ECEF frame

Most aircraft reference their position with respect to the Equator (0° latitude), the
Greenwich Meridian (0° longitude), and their height above sea-level. This reference
system provides a way to track location in a coordinate frame which is fixed with respect
to the globe. This is the frame in which the ABL platform will likely reference its
position. Both coordinate frames use the Earth’s polar axis as one reference axis, and the
equatorial plane as the reference plain in which the other two reference axes lie.
However, the ECEF frame rotates with the Earth using the line from the center of the

Earth to the Greenwich Meridian as its second reference axis.

2.2.2 The ECI Frame

Because the Earth is “rotating” in space with respect to other celestial bodies, the
ECEF frame becomes inconvenient to track the motions of satellites that orbit the Earth.

A new frame, the ECI frame, is adopted to track these motions. This frame does not

8

rotate with the Earth, but rather fixes a reference axis on the Vernal Equinox, also
referred to as the First Point of Aries. This provides a seemingly more absolute fixed, or
“inertial”, frame with which to measure the rotation of the Earth and the motions of

satellites.

2.2.3 Frame Conversion

As might be expected, a conversion must exist between these two frames of
reference if any mcaningful correlation between the motions of objects in these two
reference frames is to be done. 6, will be used to refer to the rotation angle between
these two coordinate frames, and will be used for this conversion. Fortunately, the rate of
the rotation of the Earth is fairly constant, remaining relatively fixed at 1 revolution every
23 hours, 56 minutes and 4.09054 seconds (American Ephemeris and Nautical Almanac,
1980). In so stating this, I am neglecting the gradual deceleration of the Earth’s rotation,
which is assumed to be negligible for the relatively short time spans with which we will

be addressing here. Therefore:
1 sidereal day = 23*3600 + 56*60 + 4.09054 = 86164.09054 sec (2.1)

The Earth rotates at the rate:

360 = 0.004178074622d_eg_ = (0.0000729211585453 ﬂ =0 (2.2)
86164.09054 sec sec sec ¢
2.2.4 Absolute Time

Now that we have a rotation rate of one coordinate frame with respect to the
other, we need to specify the amount of time that transpires during our observations.

Furthermore, we need to specify a starting value of 0, in order to propagate its value into

the future. We can obtain the former by using Modified Julian Time (MJT), which is
easily mapped to Greenwich Mean Time (GMT). For brevity, I will not discuss the time
mapping algorithm here, but will refer the reader to the software modules written in
conjunction with this thesis. The module “TimeModules.c” performs the conversion
between GMT and MJT (Numerical Recipes in C, 1990). These modules can be found at
the end of this paper. We can further obtain a starting point of 6, by referencing the
American Ephemeris and Nautical Almanac(1980) and taking any value of 8, which is

paired with its corresponding Julian time. For example:

Date: December 1, 1980

Julian Date: 2444574.5

Modified Julian Date: 4574.5

0,: 4 hrs 40 min 1.299 sec
=[(4*3600)+(40*60)+(1.299)] * [0.004166666667deg/sec]
= 70.0054124999 degrees

= 1.22182494234 radians
It is interesting to note that the position is referenced in terms of Hours, Minutes and
Seconds (HMS), rather than degrees within the Almanac. Transformation between HMS
and degrees is relatively straightforward. There are 24 hours in 360 degrees. Therefore:

360deg deg

= 0.004166666667 — (2.3)
sec

lsec =
(24hrs *3600°5%)
hr

Notice that we do not use the sidereal day (23 hrs, 56 min, 4.09054 sec) to translate these
two measuring systems, because the arc of the angle is measured in a complete 24 hour
rotation, not according to the true sidereal day.

Using this method, and the starting reference position, 6, can be calculated for
any time in the future by propagating forward using the angular velocity of @y,

0.004178074622 deg/sec. Any anomalies in the propagation, such as the gradual

- 10

deceleration of the Earth’s rotation, precession, etc., can be minimized by picking a
reference time closer to the propagation time, lessening the number of revolutions seen in

the propagation.

2.2.5 Sample 8, Calculation

In this section, the truth of the above sections will be demonstrated by showing
that a value for 6, propagated from a reference point, matches actual observations to a
relatively high precision (American Ephemeris...1980). The date I will choose to find
will be midnight, December 31%, 1980. The reference position and time will be taken as

one month prior, midnight, December 1%, 1980:

THE REFERENCE DATE:

Reference Date = December 1, 1980

Reference Time = 0 hr 0 min 0 sec (midnight)
ReferencelulianDate :=2444574.5

RefModJulianDate :=ReferenceJulianDate — 2440000

RefModJulianDate = 4.5745+10°

O0gHours =4
6gMinutes :=40
0gSeconds :=1.299

360
24-3600
DegreesPerSecond = 4.166666666666667+10

RefOgDegrees :=(0gHours -3600 + 8gMinutes -60 + 6gSeconds)-DegreesPerSecond
ReffgDegrees = 70.00541249999999

DegreesPerSecond =

3

We will use MathCad Version 7 to propagate the angle of 6, which occurs at midnight on
December 31, 1980, 30 days later. Notice that the reference date must be used in the

calculation. Also notice that the original value for 0g is the total amount traversed, and

11

must be divided modulo 360 degrees to obtain the true value of 6.

PROPAGATION DATE
Propagation Date = December 31, 1980
Propagation Time = 0 hr 0 min 0 sec (midnight)
PropJulianDate :=2444604.5
PropModJulianDate = PropJulianDate — 2440000
PropModJulianDate = 4.6045+10°
PropagationTime = (PropModJulianDate ~ — RefModJulianDate) -24-3600
PropagationTime = 2.592+10%
360
(23-3600 + 56-60 + 4.09054)
3

PropagationRate =

PropagationRate = 4.178074621850468 +10

@gDegrees =RefOgDegrees + PropagationTime -PropagationRate
OgDegrees = 1.089957483233642 +10*
Prop OgDegrees :=mod (0gDegrees ,360)

Prop OgDegrees = 99.57483233641506

The Almanac gives its observation of 6y for the propagation date as follows:

THE TRUE ANGLE FOR THE PROPAGATION DATE GIVEN BY
THE AMERICAN EPHEMERIS AND NAUTICAL ALMANAC:

Almanac Date = December 31, 1980
Almanac Time = 0 hr 0 min 0 sec (midnight)

ReferenceJulianDate :=2444604.5
RefModJulianDate = ReferenceJulianDate — 2440000

RefModJulianDate = 4.604510°

6gHours =6
6gMinutes =38
0gSeconds :=17.959

360
24-3600

DegreesPerSecond :=

DegreesPerSecond = 4.1666666666666671 0~3

Almanac8gDegrees = (8gHours -3600-+ 6gMinutes 60+ 8gSeconds) -DegreesPerSecond
AlmanacOgDegrees = 99.57482916666666

12

Finally, the propagated angle must be compared with the observation from the Almanac

to judge the accuracy of the algorithm.

DIFFERENCE BETWEEN PROPAGATION ANGLE AND ALMANAC ANGLE:

8gDegreeDifference :=Prop6gDegrees — Almanac 6gDegrees
6

0gDegreeDifference = 3.16974839620343 11 0

From this, we can see that in the period of 30 days, 0, can be accurately predicted to at
least 0.0005% error from the true angle. This indicates a predictable accuracy below 10

meters at the Earth’s surface over a time propagation of 30 days.

2.2.6 Accuracy

There are some problems with predicting 6, too far into the future. Natural
occurring anomalies that are difficult to model will invariably affect the true angle
between the Greenwich Meridian and the Vernal Equinok. Precession, nutation and the
Chandle wobble of the Earth’s rotation axis, all of which cause the Earth to “wobble” on
its axis rather than cleanly spin, will affect the rate of angular separation slightly. These
effects are extremely difficult to model, and could be the topic of another study. They
can be mitigated, however, by choosing reference date that is close to the mission date.
Very little anomalous precession occurs within one week. And the closer the date, the
more accurate a propagation of 6; will be. It is probably unwise to choose a reference

date that is more than a couple months old, as new references are constantly being made,

13

and reference dates might easily be ignored, growing ever more out of date, if their

update is not made a standard practice.

2.3 Finding the Platform in the ECI frame

All that remains for finding the coordinates of the platform in the ECI frame is to
find the coordinates of the platform in the ECEF frame, and then do a single rotation

using the value of 8, that is determined according to the methods described previously.

Rgth= Radius of the Earth + Altitude of the Aircraft
x = ECEF X coordinate of platform
y =ECEFY coordinate
z =ECEF Z coordinate
A =Degrees longitude
0 = Degrees latitude

ZECEF

YE CEF

Figure 2.1. Locating Platform in ECEF Frame

Figure 2.1 illustrates the conversion from latitude, longitude and altitude to X, Y and Z in

the ECEF frame. From the figure it can easily be seen that:

a = (R, +h)cos(S) (2.4)

14

and:

x = (a)cos(A) (2.5)
y =(a)sin(4) (2.6)
z=(R, +h)sin(8) | Q2.7

From these relations, it is seen that the coordinates of the platform in the ECEF frame

are:
(Reo+h)cos@) cos(A) | | X i
Recer =| (Ro+h)cos(®) sin(d) |-| ¥ (2.8)
(R & +h)sin(8) Z

To translate this position vector into the ECI coordinate frame, we use a rotation matrix
about the Z axis, using 0j as the rotation angle:
cos€ -—sing; O
Recr =|sinB cos@ O |e Recer (2.9)
0 0 1
From here, we also obtain the satellite’s position vector by using a time propagator to
determine the position at the current time. Fortunately, there are already ephemeris
propagators in existence, and this project will use SGP4 Version C3.01 developed by Air

Force Space Command.

2.4 Locating the Satellite

It should be noted here that SGP4 is used bccauéc a better propagator could not be
found in the public domain. SGP4 only models general perturbations, and therefore will
not be very accurate when propagating a satellite ephemeris over long periods of time.

Unfortunately, this project has limited resources, and therefore cannot branch off into

15

intensive testing of the propagator that is used. This task could be the subject of a thesis
within itself, because accuracy depends upon many factors including the type of orbit, the
§olar weather, the time of propagation and so on. Almost all of the errors introduced into
SGP4’s propagation estimates can be significantly reduced by limiting the amount of
time over which the propagation occurs. This is done by ensuring that the Two-Line
Element (TLE) sets used as inputs to the propagator are timely, preferably less than 24
hours old. This will ensure that the propagator on which this project relies will not have

to propagate over a large amount of time, each hour of which increases the position error.

2.5 Use of a Time Propagator

Both the ABLPA Preprocessor and the ABLPA Main Processor depend upon
fixing the current position and velocity vectors of a satellite through the means of a time
propagator. The accuracy of the propagator has a direct correlation to the effectiveness
of these programs. For instance, if the satellite’s position can only be estimated within a
first sigma error of *+ 500 kilometers, then the Main Processor will effectively see that a
satellites error cross section covers a significant field of view, making it extremely
difficult to find a window in which to fire. As mentioned previously, this error can be
reduced by limiting the time through which position propagation occurs. Error can also
be reduced by finding a better propagator that handles special perturbations. As of the
writing of this thesis, Air Force Space Command is working on the completion of just
such a propagator. It is estimated that this Special Perturbations (SP) propagator will be
completed by the summer of 1999. This propagator may find suitable use as a substitute
for SGP4 in both the Preprocessor and the Main Processor. It may, however, prove to be

too complicated for use in the Main Processor. The SP propagator, while more accurate

16

than SGP4, will almost certainly prove to be far more complicated. It will require more
input parameters, and will take longer to execute. This is not a problem for the
Preprocessor, as the Preprocessor is not narrowly constrained by the amount of time in
which it needs to run. However, the Main Processor needs to execute quickly, in “real-
time”. If the SP propagator requires an extra 0.1 seconds to run, this translates into an
extra 10 seconds minimum for the Main Processor running with a 100-satellite TLE set.
This is clearly unacceptable, as there cannot be a 10 second lag in the fire control system.

Therefore any replacement for SGP4 will be required to pass this hurdle.

2.6 Comparison of Satellite to Platform Position Vector

Now that we know R, the position vector of the platform in the ECI frame, and r,

the position vector of the satellite in the ECI frame obtained from SGP4, we can compare

the two, looking to see whether the satellite crosses the artificial horizon of the platform.

This can be done by finding D, representing the component of r in the R direction:

D = Fur - = (2.10)
Ruc

It is then a simple matter to compare the magnitude of D with the magnitude of R. If the

Rgc; = Platform position vector

in ECI frame

recr = Satellite position vector
in ECI frame

D =Component of rgq,
in Rgcy

direction

Figure 2.2. lllustration of the Comparison Between R and r.

17

magnitude of D is greater than the magnitude of R, then the satellite must be above the

artificial horizon of the platform, and is therefore in view.

2.7 Evaluating Time-to-Rise

Thus far, it has been determined whether or not the satellite is in view of the
platform, but it has not been determined if the satellite might appear above the horizon at
a later point in time. We are interested in how long the satellite takes to cross the horizon
because there is a slice of time after the Preprocessor runs when a satellite could rise and
not be noticed (until the next run of the Preprocessor). Therefore, we would like to
isolate those satellites that are due to rise before the next run of the Preprocessor, so that
these satellites can also be included in the list sent to the Main Processor. To do this is
apparently very simple. It is fairly easy to approximate the rate of change of the
magnitude of the D vector discussed earlier and compare the change in D to the Time
Until the Next Run (TUNR). Doing so should reveal a fair estimate of whether or not the
satellite is due to rise before the next run of the Preprocessor. But there is a small
problem. Ther¢ may be a case when the satellite never rises. Such is the case when the
platform is at the north pole and the satellite is in an equatorial orbit. This is also the case
when then platform is on the equator and 90 degrees from a polar orbiting satellite. In
fact, there are many cases like this when the rate pf change of D is not exactly applicable
to our analysis, because the satellite does not move toward or away from the platform in
the short time under consideration. The solution to this problem is to weed out all
ephemerides that never cross the artificial horizon plane of the platform before we

evaluate the time to rise of the satellite.

18

2.8 Ephemeris Clipping

The idea of the Ephemeris Clipping Algorithm (ECA) is fairly straightforward.
The ECA simply throws out all satellite ephemerides that do not cross the artificial
horizon plane in the current orbit. Thus, in the case of Figure 2.3, Ephemeris 1 would be

discarded while Ephemeris 2 will be further evaluated.

Plain

Horizon
|
|
|
\

Ephemeris 1

Ephemeris 2

Figure 2.3. Ephemeris Clipping lilustration

1t is important to note that this algorithm only evaluates a satellite in its current orbit, and
does not propagate the ephemeris in time. Therefore the orbital elements that are used to
evaluate this orbit must be propagated (also using SGP4) to the current time. It is
therefore assumed that the ephemeris does not change significantly in the time between
runs of the Preprocessor. Although precession of the Earth may change the attitude of the
.platform with respect to the satellite slightly in this time, the variations will be slight if

the time between runs is kept below 5 minutes.

19

2.8.1 Run Intervals

The preprocessor is designed to run at given intervals, processing a new set of “at-
risk” satellites during each interval. The interval time should be long enough so that the
preprocessor can easily process all ephemerides which are fed to it, and still short enough
so that it éan eliminate a majority of the satellites which will not be seen during the
interval. For example, picking an interval of one second may not be wise, because the
preprocessor may not be able to run through the enormous amount of data in that time
frame. Furthermore, picking an interval time of 90 minutes may not be very beneficial,
because many Low-Earth Orbiting (LEO) satellites have periods of roughly 90 minutes.
Therefore if a satellite is still an hour away from being visible, it will still have to be
looked at by the Main Processor during the fire sequence. For the purposes of this study,
5 minutes will be used as a nominal time interval. Thus, the preprocessor will generally
use the current time as the start of the processing time interval, and the current time plus
5 minutes as the end of the processing interval. This will mean that the preprocessor

must be run every 5 minutes at a minimum, but may be run more often, if desired.

2.8.2 Ephemeris Clipping Algorithm

The geometry of the plane-ciipping problem is illustrated in Figure 2.4. For each
satellite being evaluated, we are given as inputs the orbital elements of the satellite and
the time interval we are evaluating. Our goal is to find whether or not the satellite crosses
the platform’s plane of view. As a beginning, the minimum distance d, between the
platform and the satellite orbit needs to be determined. This is logically the line that

forms a right angle with the orbit plane when drawn from the platform to the orbit plane.

20

6, =Degrees between Greenwich Meridian and Vemal Equinox
w+v = Argument of Perigee + the True Anomaly of the satellite

¥ = Angle between ascending node of satellite and the platform
¥ =Vemal Equinox (First Point of Aries)
d = Closest pass of the satellite orbit

to the platform ‘

A =Degrees longitude Satellite Orbit
of the platform

& =Degrees latitude of
the platform

Q =Right Ascension
of the satellite

i =Inclination of

the satellite

Greenwich
Meridian

Figure 2.4. Preprocessor Spherical Geometry lllustration

The two spherical triangles illustrated in Figure 2.4 are used to determine d in degrees.
From the figure, it can be seen that ¥ represents the spherical angle from the ephemeris
right ascension to the platform. Using the spherical right triangle formulae the length of
¥ can be determined by:
cos(¥) = cos(d)cos(2—6g — 1) (2.11)

Once ¥ has been found, o, or the angle between W and the equator, is easily found with
the equation:

cos(a) = tan(Q —Og — A) cot(¥) (2.12)
The angle between ¥ and the ephemeris propagation direction is denoted as B. As shown

in the following examples, the method for finding B will differ depending upon location.

21

® Prograde orbit

Case 2
Northern
Hemisphere
Prograde orbit
90 < (o +1) <180
p=180- -1

Case 3
Northern
Hemisphere
Prograde orbit
180 < (o +1)< 270 }
B= (au+1i)-180

Figure 2.5. Northern Hemisphere,
Prograde Orbit Cases

Northern Hemisphere

2.8.3 Finding Beta

Unfortunately, B cannot be found with a
single equation. As a matter of fact, it must be
found by looking at twelve individual geometric
cases which serve to describe the relationship
between B, o, and i.

The relationship is not a trivial one. It is

governed by the hemisphere of the Earth (northern
or southern) in which the platform lies, the slope
of the orbit (prograde or retrogradé), and the
position of the platform with respect to the
ephemeris plane.
The first three cases deal with the possibility that
the platform is in the northern hemisphere, and the
inclination of the satellite orbit is less than 90
degrees (a prograde orbit). As the graphical
depiction shows, B can be three different values,
depending upon where the platform lies with
respect to the ephemeris path. For instance, in
Case 1,

0<(a+B)<90

B=a+i (2.13)

22

Case 4
Northemn
Hemisphere Likewise in Case 2:
Retrograde orbit

£ 90 < (a+1)<180

 p=180-0a-1

90 < (x+i)<180
B=180-a—i (2.14)

and in Case 3:

180 < (@ +i)< 270
B=a+i-180 (2.15)

While cases 1 to 3 deal with a prograde orbit, cases 4
to 6 describe the relationship between a platform in
the northern hemisphere and a satellite with a
retrograde orbit. One might be tempted to jump to

Case 5 the conclusion that finding would be the same as in

Northern
Hemisphere cases 1 to 3, however, as can be seen in Figure 2.6,
Retrograde orbit
180 < (o +1) < 270 . L. ‘
B= (a+I)-180 the relationship is not the same. In Case 4, where
Case 6 the platform is located below the retrograde orbit and
Northern d
Hemisphere above the equator:
Retrograde orbit
270 < (o +1) < 360)
B= 360-(a+I) 90 < (@ +i)<180
B=180—-a~i (2.16)

Similarly, in Case 5:

180 < (@ +i)< 270
B=o+i-180 (2.17)
And in Case 6:
Figure 2.6. Northern Hemisphere, 270 < (@ +i)< 360
Retrograde Orbit Cases B =360—a-i 2.18)

23

Case 7

Prograde orbit

Southern Hemisphere
Prograde orbit
0<(o-1)<90

|
Case 8
B=a-1

Case 9
Southern Hemisphere
Prograde orbit

90 < (o -1)< 180
B=180+i-a

§'

Southern Hemisphere

Figure 2.7. Southern Hemisphere,

Prograde Orbit Cases

Just as there are six possible configurations in the
northern hemisphere, there are also six
configurations in the southern hemisphere, three for
prograde orbits and three for retrograde. Cases 7 to
9 illustrate the possible scenarios for a platform in
the southern hemisphere with a prograde satellite

orbit. For Case 7:

~90<(@—i)<0

B=i-a (2.19)
For Case 8:

0<(@—i)<90

B=o—i (2.20)

And for Case 9:

90 < (@ —i)<180
B=180+i-o (2.21)

The last three cases illustrate the possibilities in the
southern hemisphere combined with a retrograde

orbit. For Case 10:

-180 < (@ —i)<-90

B=180+a—i (2.22)
For Case 11:

-90< (@-i)<0

B=i-a (2.23)

24

Case 10
Southern
Hemisphere
Retrograde orbit
-180< (x -1)<-90
B=180+a-i

Case 11
Southern Hemisphere
Retrograde orbit
N0 <(e-1)<0
B= i-a

SR

Case 12
Southern
Hemisphere
Retrograde orbit
0<(o-1)<90
B=oa-1

Figure 2.8. Southern Hemisphere,
Retrograde Orbit Cases

And finally, for Case 12:

0<(—i)<90
B=oa-i (2.24)

The reader might notice a few patterns from
the twelve possible scenarios presented here. First,
notice that all cases can be described by (¢ + i) in the
northern hemisphere, and (o - i) in the southern
hemisphere. Second, despite the fact that there are
twelve possible position scenarios with respect to
hemisphere, platform and satellite orbit, .there
appears to be only eight independent equations for
determining B. Table 2.1 shows all equations for B

listed together. Notice that some of the cases have

the same equation for determining B. From this
table it becomes readily apparent the true
relationship between o, i, and B. This final
relationship is illustrated in Table 2.2. It is these
equations in Table 2.2 that are used to determine [

in the preprocessor software.

25

Table 2.1. A Summary of Twelve Geometric Cases for Finding

Hemisphere | Orbit Type

Prograde 0<(o+1)<90 N/A B=o+i
Prograde 90<(0+i)<180 N/A B=180-0o-i
Prograde 180<(0+i)<270 N/A B=a+1i-180
Retrograde 90<(0+1)<180 N/A B=180-0-1i
Retrograde 180<(0+i)<270 N/A B=o+i-180
Retrograde 270<(0+1)<360 N/A B=360-0o-1i
Prograde N/A -90<(o-i)s0 |B=i-a
Prograde N/A 0<(0-i)<90 B=o-i
Prograde N/A 90<(0-i)<180 |B=180+i-a
Retrograde N/A -180<(0-1)<-90 | B=180+ o -1i
Retrograde N/A -90<(0-1)<0
Retrograde N/A 0<(0-i)<90

Table 2.2. The True Relationship Between B, o, and i

Hemisphere

< (o+i) € 90 N/A B=o+i
(o+i) < 180 N/A Bp=180-0-i
(o+i) £ 270 N/A B=o+i-180
(o+i) € 360 N/A B=360-0-i
N/A -180 < (o-i) < -90 [B=180+ -1
N/A -90 < (o)< O
N/A 0 < (o-i)< 90
N/A 90 < (o-i) < 180

26

The final distillation of relationships between B, o, and i shown in Table 2.2 no longer
uses the orbit type as a reference, because the emphasis is more rigorously based upon the

combination of o-+i and a-i on S.

2.8.4 Resolution of the Satellite Critical Radius

Knowing B and ¥ allows d to be calculated by following another rule for

spherical triangles:

sin(d) = sin(f) sin(¥) (2.25)

The true anomaly V can be extracted in a similar fashion, assuming that the argument of

perigee, @, the minimal distance, d, the angle, B, and the distance, ¥, in degrees are all

known:
sin(v + @) = tan(d) cot(f) (2.26)
cos(V +w) = cos(¥)/cos(d) (2.27)
\% =(a)+v)f-w , (2.28)

Notice that finding both the sine and cosine in Equations 2.26 and 2.27 allowAa way to
resolve quadrant errors which would arise from using either the sine or the cosine alone.
Unfortunately, v+@ can be anywhere from 0 to 360 degrees. The sine or cosine alone can
only pinpoint O to 180 degrees. Although the method for dealing with quadrant errors is
straightforward, the method used for this study is listed here for clarity in Table 2.3.

From the true anomaly, the scalar radius, rg., of the satellite orbit at the closest point may
be deterrnjned. The value ry, represents the distance of the satellite from the center of

the Earth at the point where the satellite is closest to the platform_ Assuming that the
27

Table 2.3. Resolution of Quadrant Ambiguities

GIVEN sin(x) =y
cos(x)=z

IF sin’(y) is positive or 0 AND cos™(z) is positive or 0 THEN
X= sin'l(y)
IF sin'l(y) is positive or 0 AND cos'l(z) is negative THEN
x = 180° - sin”'(y)
IF sin’l(y) is negative AND cos ' (z) is positive or 0 THEN
x = 360° - sin’\(y)
IF sin’l(y) is negative AND cos'l(z) is negative THEN
x = 180° + sin”\(y)

eccentricity, e, and the semi-major axis, a, are known, rg, can be found by applying the

equation for a conic section:

2
ra=a—0—¢) : ‘ (2.29)
1+ecos(v)

Now that rg is known, it must be compared to the critical radius, req, to determine
whether the satellite crosses the platform viewing horizon. From Figure 2.9 it can be

seen that the critical radius is defined by:

reit = (Re+h)/cos(d) (2.30)

If the satellite orbit radius measured from the center of the Earth is greater than the
critical radius for the orbit, then the satellite will have to be further processed by the

preprocessor in order to determine whether the ephemeris reaches the platform horizon

28

Rgth = Radius of the Earth + the height of the platform

d =Degree distance of closest approach to the satellite
Ty = Minimum radius from Earth center to platform horizon plain
¢ =Elevation angle of satellite above horizon

= Satellite distance from
Earth center

rnt

Figure 2.9. Comparison of Satellite Radius with the Critical Radius

plane during the specified time interval. If the critical radius is larger, however, the

ephemeris can be discarded as out of range.

2.9 Visibility of the Satellite

To recap, the intention of this preprocessor analysis is to find all satellites on the
input TLE file that will be visible to the platform from the current time until the time that
the preprocessor is next run. The preceding discussion has shown that we can determine
whether the satellite is in view of the platform, and whether the satellite’s ephemeris is in
view. This leaves us with four possible cases concerning the visibility of the satellite
from the platform. These four cases are summarized in Table 2.4. The first case is that

we have found that the satellite is currently in view, in which case our analysis stops and

29

this satellite is included in the input TLE file to the Main Processor. The second case is
that neither the satellite nor its ephemeris is visible before the next run of the
preprocessor, in which case the satellite is thrown out because it is always out of range
for the time window of our analysis. The third and fourth cases require a bit more
explanation. In the third case, the satellite is not in view, but its ephemeris is in view. As
stated previously, this presents a dilemma whereby the satellite could move into view of
the platform before the Time Until Next Run (TUNR) of the preprocessor. In this case,
the satellite could be in view during a window of time after the preprocessor is run, but it
may not be included in the list of satellites sent to the main processor until the next run of

the preprocessor has been made.
Table 2.4. Possible Outcomes of Check to See if Satellite is Visible

Satellite Satellite Ephemeris | Time To Rise | Visible To Platform?
Path

In View In View N/A YES

Not In View Not In View N/A

Not In View In View < TUNR

Not In View In View > TUNR

To catch this minor error, we must make a check to ensure that the satellite is not going
to rise above the artificial horizon of the platform, at least until after the next run of the
preprocessor. If this is the case, then our satellite falls into case 4, otherwise, it must fall

within case 3.

30

2.10 Checking Time-to-Rise of the Satellite

There are many ways to check the approximate time until the satellite rises above

the artificial horizon. We will benefit from realizing that, for our application, we are only

Rg; = Platform position vector in

ECI frame
rgc; = Satellite position vector in
ECI frame
D =Component of rgcqin Rgey
direction

Veer= Velocity vector of platform
Vg = Velocity vector of satellite

Figure 2.10. Vectors Used to Approximate Rise Time

interested in the case where the satellite is very close to the artificial horizon, because the
preprocessor, as mentioned before should be run every few minutes. Referring to Figure
2.10 above, we would like to find out how much time passes before the vector D has a
greater magnitude than the position vector of the aircraft, Recy. To do this, we must find

the rate of change of D with time:

Time to Rise = 2 DTR (2.31)

Finding the derivative of D is a tricky process, but, because we are interested in only the
time when the satellite is a few minutes away from the artificial horizon, we can find an

approximation for the derivative of D:

N A \%
D =Vpq R+ |R E_C*f_h| (2.32)
®

31

In this equation, Vgcy is the satellite velocity vector. R is the unit vector in the direction
of the platform position vector. Vg is the platform velocity, while r is the satellite
position vector; Re is the radius of the Earth, and h is the height of the platform above
the surface of the Earth. All of these vectors are in the ECI frame. We can easily obtain
vgcr from our time propagator, and both the satellite and platform position vectors have
already been calculated. This leaves only the velocity of the platform in the ECI frame to
calculate. We must assume that we are given the velocity of the aircraft in the ECEF
frame. Conversion to the ECI frame involves accounting for the angle, 6, that currently
separates the rotation of the ECEF frame with respect to the ECI frame, as well as the
instantaneous rate, ®, at which this angle is increasing. In short the velocity of the

aircraft in the ECI frame will be;:

cos@, -sinf, O 0
Vg =|sinf, cos@, OV + 0 X R pezr (2.33)
27 rad
0 0 1
86164.09054 sec

Once the rate of change of D has been determined, the approximate rise time from
equation 2.31 can be compared to the Time Until Next Run (TUNR).

If TUNR > Time To Rise — Include satellite in list given to Main Processor

If TUNR < Time To Rise — Throw oht satellite because it is not visible

2.11 Preprocessor Methodology Conclusion

The goal of the ABLPA Preprocessor is to weed out all satellites that are not
visible during a given time period. After running the software that models the algorithm

described in this chapter, the results indicate that, given a worst-case scenario, at least

32

75% of the active satellites in the input file are discarded. This leaves 25% or less of the
active satellites to be analyzed by the Main Processor. After the Preprocessor has
finished, it sends the $atellites that are in view to an output file, where they can be read by
the Main Processor when the need arises. A more extensive analysis of the Preprocessor

will be addressed in Chapter IV.

33

lll. ABLPA Main Processor Methodology

We have just finished discussing the ABLPA Preprocessor, which handles an
input file of satellite Two-Line Element (TLE) sets, and forms an output file of all
satellites in that list that are in view of the laser platform during a given time. This
chapter will discuss the ABLPA Main Processor, which is designed to take this
“shortened” list of satellites and perform real-time calculations to determine if any of
these satellites will fall within the predicted arc of the laser during a given fire sequence.
The first step in this calculation sequence is to deterrnine; the location of each satellite

with respect to the platform.

3.1 Targeting the Satellite
Up to now, we have looked at the positions of both the platform and the satellite
as coordinates in the ECI frame. Now, however we wish to view the satellite as it
appears with respect to the platform. This is done easily by switching to a new platform-

centered coordinate frame.

3.1.1 The REN frame

Thi§ new platform-centered frame will be referred to as the Radial/East/North
(REN) coordinate frame. The three right-handed axes will consist of the line from the
platform to the north pole (the line tangent to the path as traveled across the spherical
surface of the Earth), a line traveling due East, and a radial component “up” from the

center of the Earth. In this coordinate frame, the platform position will be made the

34

center by subtracting its position from other bodies also referenced in the REN frame. A
representation of this new coordinate frame is shown in Figure 3.1. Using this frame of

reference, a new position vector, p, will refer to the position of the satellite with respect

Ry¢q = Platform position vector in ECI frame
rpcq = Satellite position vector in ECI frame

in the REN frame.

Figure 3.1. Derivation of p in ECI Frame With Respect to the REN Frame

to the platform. The vector p can be derived from the two vectors Rgcy, the platform
position in the ECI frame as referenced from the center of the Earth, and rgcy, the satellite

position vector in the same frame:

Peci =Tees —Rpg (3-1)_
where:

Prar = pxi"' pyj + leg ' (3.2)
we want to obtain p in the REN frame:

Prew =P, R+p,E+p N (3.3)

35

To find this vector in the REN frame, we must first find the conversion matrix that will
take us from the ECI coordinate frame to the REN frame. This coordinate transformation

matrix is simply:

Ri Rj RKk|(p,Y
Pew =|E-1 E-j Ek||p, (3.4)
N-i Nj Nk||p,

While the i, j, and k unit axis’ of the ECI frame have been defined already, the R, E, and
N unit axis’ of the REN frame have not yet been rigorously defined. The R unit axis
direction can be seen to be the same direction as the position vector of the aircraft in the

ECI frame (pointing up from the center of the Earth):

=

il
=
3

(3.5)

=
o)
Q

The E unit direction can be derived from the angular motion of the Earth crossed with the

aircraft position vector direction:

S

| (3.6)

E — e x ﬁECl
Ia_)aa XR g |
Similarly, because the REN coordinate frame is right-handed:
N=RxE (3.7)

Armed with this information, p can now be found in the REN frame.

36

3.1.2 Determining Laser Position in the REN Frame

Now that we have the position vector of the satellite with respect to the aircraft, it
is a fairly easy matter to find the unit position vector of the laser. Assume that the laser
Azimuth (Az) and Elevation (El) will be known. Az will be given in degrees east of

north. El will be given in degrees above the platform artificial horizon.

Azimuth = Az
FElevation = El

Figure 3.2. Laser Position in the REN Frame

Looking at Figure 3.2, it is fairly straightforward to derive the unit position vector L in
the REN frame. L describes the unit direction in which the laser is pointing in the REN

frame, and has unit magnitude:

sin(El) R
L =| cos(ED)sin(Az) |-| E (3.8)
cos(El)cos(Az) | |N

With these two vectors, p and L, we now have a way to compare the position of the

satellite with the position of the laser turret, both of which are given in the REN frame.

37

3.2 Position Error

Up until this point, we have been addressing the position of the satellite and laser
arc as points that are both fixed and known. However, applying this to an operational
setting will quickly reveal that the exact position of both the laser and the satellite are
only known within some degree of error. These errors introduce a growing uncertainty
that must be modeled and accoupted for if we are to reliably deconflict the path of the
laser with the ephemeris of the satellite. There are a number of uncertainties that the
reader may have noticed thus far. The first set of uncertainties involve the positions of
the platform (or laser turret), satellite, and the missile. Our current level of technology
allows us to establish and forecast positions in the ECI frame fairly accurately, but each
position estimate or forecasted position estimate will still have an uncertainty. The
second set of uncertainties concern the laser itself. Each of these errors will be addressed

here.

3.2.1 Platform Position Error

The laser platform, in the case of the ABL prograin, is a Boeing 747-400 airframe
equipped with a Honeywell GPS package. According to Honeywell, this GPS system
will be accurate to within 10 meters. This being the case, we will have an insténtaneous
position error of only 10 m or .01 km. This error is fairly small. However, given the
nature of the Predictive Avoidance mission, we have the need to forecast the plane’s
position into the future by approximately 20-30 seconds, in order to fully encompass the
necessary laze time to destroy the missile. Recall that the firing solution must be derived
in the second before the laser fires, so that the laser can fire for an uninterrupted amount
of time. This amount of time is not expected to exceed 30 seconds. Therefore, we must

38

also know the path of the airplane in those 20-30 seconds. It is assumed by the author
that the trajectory of the platform will be somehow actively controlled by an autopilot, so
that any deviations from the planned course will be corrected in real-time. Given this
type of active control system, the author assumes that the position error of the plane,

working in conjunction with the Honeywell GPS, should not exceed + 50 meters or 0.05

kilometers.

LSS
|
i
?
| |
« ~ A —— S
R, R,
Figure 3.3. Computing the Error Angle Contributed By Platform Position
Error

Consider the illustration given in Figure 3.3. The inputs that are currently known are the
absolute range to the satellite, the range to the missile, Ry, the position error of the
platform, R, and the approximate intermediate distance between the missile and the
satellite, R;. Notice that R; can be approximated, by subtracting Ry, from the absolute
range to the satellite when the satellite is close to intersection with the laser. The goal is

to find the effective error angle, E;, contributed by the unknown location of the platform.

39

From the initial known parameters, the downrange spread distance, S4, can be

approximated by:

§, = (3.9)

Knowing Sq4 allows the computation of the effective error angle Ej:

E,=tan" (Rsﬁ) . (3.10)

m 1

It can be seen here that E, will have a bigger impact on the overall error angle as the
range to the satellite increases. As the satellite moves farther away from the platform, the
error angle due to satellite position uncertainty will decrease, while E, will remain
constant. Thus, E, will play an ever more prominent role as the range to the satellite

increases.

3.2.2 Satellite Position Error

The satellite position error is the dominant position error in the error budget for
almost all cases. The position of the satellite, as mentioned before, is a forecast derived
from SGP4. In the period of 20-30 seconds, the error ellipsoid in which the satellite can
be expected to reside will not change significantly. However, from the outset, the error
ellipsoid will be big. Without conducting a thorough study of SGP4, there is no concrete
way to establish an exact error, or rate of change of error. Furthermore, at this time we
do not know how current the satellite input to SGP4 will be. If SGP4 is expected to
propagate over a period of hours, the error will be significantly less than if propagation is
conducted over a period of days or weeks. In the absence of accurate data, and realizing

that the bropagatiori is likely to be less than a day, it will be assumed that the position of

40

the satellite is established at = 10000 meters or 10 km. Given 30 years of satellite
tracking history with SGP4, this position error estimate appears to be a reasonable
average. The satellite position error will also be a parameter in the software that can be
changed as the customer, if deemed necessary. Assuming that the position error radius of

the satellite, R;, can be approximated, the error angle contributed by the satellite will be:

E, =tan™ & : (3.11)

lp|

Where Ipl represents the range to the satellite. Notice that this error angle will decrease

as the range to the satellite increases.

3.2.3 Missile Position Error

Up to this point, the missile’s position has been thought of only as an extension
from the laser turret. At the time of laze, the turret line of sight must be positioned on the
missile such that there is no more than *+ 1-2 meters of error. If this is not so then the
laser will never reach its target, and the ABL program in general is in serious jeopardy.
The range to the missile is also assumed to be known within 1-2 meters. What we do not
know is the behavior of the missile when forecasted over time. It has been assumed that
the turret slew rates currently used to keep the missile locked will not change over our
30-second forecast span. Hence, with regard to the turret slew rate, S, we must assume
that:

= Slock and (312)

forecast

forecast — ™ lock

It is not necessarily reasonable to expect that this will be true. The ABL platform is
intended to intercept a missile during its initial boost stage, where it is the most

41

predictable and vulnerable. If this is the case, then the position error of the missile is

orders of magnitude less than the position error of the satellite, with a position error

sphere of roughly *+ 50 meters.

Figure 3.4. lllustration of the Error Angle Introduced by Uncertain
Missile Position

Referring to Figure 3.4, if the radius of this missile position error sphere, Mp, and the
range to the missile, Ry, are known, then the error angle introduced by the missile
position uncertainty, E,, will be:
-1 M P
E =tan" (—) (3.13)
‘ R,
Notice that the error angle will increase as the platform gets closer to the missile. Also
notice that, if the missile behaves in such a way that significant discrepancies are

introduced into its trajectory, then the position error can easily increase from 50 meters to

42

5 kilometers. There are two ways to account for this error in a forecast. The first method
is to introduce a significantly larger missile position error into the forecast, which will
inevitably cause a much bigger error angle in our forecast. This is not very desirable, as
it increases our error angle as much as two full degrees, and gives the user a smaller
space with which to work. The second method is to recompute in mid-laze, should the
lazing parameters stray considerably from initial conditions. While this may seem at first
to also be undesirable, it can seen that this method tightens the error angle considerably,
allowing a substantially reduced chance that a forecast will result in a satellite hit. If no
satellites were previously forecast to be intersected, then rerunning the Main Processor in
mid-laze presents only an extremely small chance of forecasting an intersection of a
satellite. The alternative to recomputation is to incorporate a position compensation error
of two or more kilometers into the position error of the missile, adding whole degrees to

our error angle.

3.3 Laser Diffraction Errors

Normally one would think of a laser beam as being fairly concentrated, without
much diffraction error. This is essentially the case between the platform and the missile,
where the range is only 200 km or so, and the beam is “focused” on the target. However,
when dealing with the range to an orbiting satellite, with distances of six Earth radii
(GEO altitude), beam diffraction has the potential to become a significant factor. There
are two areas that we must consider when attempting to determine how a beam will
spread out over long distances. The first area deals with intrinsic errors within the laser

itself, and the second area covers optical diffraction and divergence.

43

3.3.1 Laser Intrinsic Spread Error

In theory, a laser should have no intrinsic spreading error, as every photon is at
the same wavelength and has the same propagation direction. In practice, however, every
laser has imperfections in its optics and propagation that cause the beam to div;erge.
These divergent patterns may be caused by very small imperfections in the alignment of
the optics, transmission medium, or by a host of other factors. Unfortunately the intrinsic
spread error of the ABL lasers have not been made available to us, and so the role it plays
cannot be accurately discussed. However, we must assume that a laser designed to hit a 2
meter square target at 200 km is also designed to have a very small intrinsic error.
Therefore we will assume this spread to be small enough to ignore, when compared with
the significantly larger error angles introduced by position errors. It is mentioned here
only for the purposes of pointing out that it has a potential for becoming a significant

€ITor source.

3.3.2 Optical Diffraction and Beam Divergence

The ABL High Energy Laser (HEL) is a “strongly focused” laser. That is, the
optics are designed so that the beam will narrow from the aperture diameter of
approximately 1.5 meters to the theoretical “diffraction-limited spot-size”, which is the
smallest possible spbt to which the laser can focus to. An illustration of this is shown in
Figure 3.5. From this simple illustration it can be seen that the laser beam diverges in a
parabolic path, but slowly conforms to a diffraction angle, Op;rr. The angle, Oprrr can be

modeled by the equation:
A

eDIFF =
2

Where A is the wavelength of the laser (in this case assumed to be 1.315 pum for the HEL,

(3.14)

44

Light Amplifier Propagated Beam

r

f

W, =Radius of narrowest point (waist) of the light amplifier

W, =Radius of narrowest point (waist) of the focused beam
0prr = Diffraction angle approximating the divergence of the beam
S =focal length (distance to the focus point)

Figure 3.5. Exaggerated Divergence of a Highly Focused Beam

1.03 um for the TILL, or 1.06 um for the BILL), and w; is the radius of the narrowest

part of the focused beam. w, in turn can be found if w; is known:

w =L EAE)
1

Where w; represents the radius of the narrowest point, or “waist” of the radiation
amplification chamber of the laser, and f is the focal length. Unfortunately, we are not
privy to the specifications of the laser mechanism, so we need to find another way to
estimate w;. We can, for instance, assume that the designers of the ABL HEL system
will wish to focus the laser as close to the theoretical limit as possible, approaching the

diffraction-limited spot size:

Spot Size = f tan(%) (3.16)

45

Setting w equal to the diffraction limited spot size should present a fairly close estimate

to the actual value of w;, and would yield the equation:

A

— 3.17)
nf t3-11(5)

Opirr =

In this way, we can approximate the beam dispersion by knowing only the focal length

and aperture size of the laser.

3.4 Other Error Considerations

There are other errors that can pop up in our estimation of the probability to laze a
satellite. The most notable error is the uncertainty that the satellite is traveling with
constant speed and direction. Our time propagator assumes there are no forces acting on
the satellite other than the pre-existing conditions and two-body gravitational effects.
However, if the satellite undergoes station-keeping maneuvers, or is otherwise deflected
from its course by some unforeseen event, the error can quickly become catastrophically
worse over a surprisingly short period of time. Now the question must be asked as to
whether or not we should choose to try to model these events and somehow account for
them. This author would argue that the answer is no. To atteinpt to trap all possible
errors, even those occurring beyond the 3¢ realm of possibility, would constrain the
problem to such a degree as to make it unwieldy without adding much fidelity. We must
assume that the.satellite TLE files are only ho_urs (at most) old. In this time, it is
conceivable that a few station-keeping maneuvers have occurred on a few satellites.
However, the chances that a given satellite has been maneuvered within a few hours and
happens to cross the laser beam at the time it is fired are so infinitesimal as to preclude

them from consideration. Such a chance certainly does not justify adding an additional

46

two degrees or so to every LEO satellite position error angle! Therefore, the possibility
of station-keeping maneuvers is best left out of the project. Some of this error could,
however be accounted for by increasing the position error of the satellite, if desired.

A second problem with the error analysis seen in the previous pages is that all
position errors are modeled as a sphere. For the platform position error, this
approximation may be accurate. However, for the forecasted missile and satellite
positions, it is unlikely that this is the case. The missile’s position, for example, is
initially known to within a meter of our reference point, the platform. As time progresses
within the forecast, the missile’s position error will likely radiate from its known starting
point as a elongated ellipsoid, rather than a sphere, as the acceleration is the most
uncertain parameter, not necessarily direction. Furthermore, the satellite’s position error
is probably more accurately modeled as a highly eccentric ellipse, because its altitude is
likely to be more established than its orbital progress. In future iterations of this project,
it may be beneficial to model these position errors using a covariance matrix, rather than

an absolute error angle.

3.5 Error Budget Consolidation

Now that we have assessed the errors that exist within our error budget, we can
begin to consolidate these errors into one error angle. You will notice that, of all the
errors, Satellite Position Error seems to be the biggest in most cases. This is
demonstrated in Table 3.1, which shows the magnitude of both the error angle as seen
from the platform, and the position/displacement error as seen downrange at the

satellite’s distance from the platform, at both a LEO and GEO range. Knowing each of

47

the error angles computed above allows computation of the overall error angle as seen by

the platform.

Table 3.1. Error Budget for Predictive Avoidance Using the High Energy
Laser (HEL) with a Wavelength of 1.315 pm

Error

142 Angle Error
At LEO Alt
Range = 500 km

¥4 Angle Error
At GEO Alt
Range = 36,000 km

Displacement
Error At LEO
Range=500 km

Displacement
Error At GEO
Range = 36,000 km

Airplane
Position Error
=+50m

0.01424 deg

0.01424 deg

+124 m

+ 8950 m

Missile
Position Error
=+50m

0.01432 deg

0.01432 deg

+125m

19000 m

Satellite
Position Error
=+ 10000 m

1.14576 deg

0.01592 deg

+ 10,000 m

Laser
Divergence

0.00014 deg

0.00014 deg

+1m

+88m

Laser
Intrinsic Spread

Total Error =

Na?+b*+c*+d?

Unknown,
Assumed Small

1.14588 deg

Unknown,
Assumed Small

0.023072 deg

Unknown,
Assumed Small

Unknown,
Assumed Small

The values in Table 3.1 were computed using a focal length, f, of 200 km (the range to

the missile) and the HEL wavelength. Estimates for the BILL and TILL lasers will be

very similar, as their wavelengths are fairly close to the HEL wavelength, and Laser

Divergence is a minimal contribution to the overall error angle. Each of the error sources

is independent of the others, so the Total Error is simply found by taking the square root

of the sum of the squares of the individual errors. Thus, the overall error angle, ¢, can be

computed by knowing the error angle contributed by the position errors of the satellite,

48

missile, and platform (Es, En, and E, respectively) as well as the Laser Divergence angle,

Opirr:

a=\E’+E, +E, +6,;" (3.18)

Notice that the error angle is largely dependent upon the range to the satellite in question.
LEO orbiting satellites introduce a much larger error angle than the GEO satellites,
because of their proximity to the platform. Also notice that the error angle is largely
dominated by the position errors, which in every case establish. at least 99.99% of the
Total Error. This brings up an interesting short cut. As mentioned previously, the Main
Processor is extremely constrained by processing time, because it must run in real time.
Therefore we must ask whether or not the additional 0.01% error contributed by Laser
Divergence is worth the extra processing neéessary to calculate it. Almost certainly, it is
not. Therefore the processor should be able to ignore this error and save a small amount

of processing time without sacrificing much fidelity:

a=\E’+E,+E, (3.19)

In the future, as position tracking for the ABL system becomes more refined, Laser
Divergence error may play a bigger role, and thus have to be included in the error angle
calculation. Until that time, the radius of our “position error cone” can be described as an

angle, o, which described in equation 3.19.

49

3.6 Finding the Current Separation Angle

To recap, first the satellite position vector, p, was computed in the REN frame,
followed by the unit position vector of the laser, L, also in the REN frame. In the last
section, the error angle, &, was derived. Now, referring to Figure 3.6, everything is in

place to find the angle, f3, that separates the laser from satellite.

a = Error Angle

p = Separation Angle

p = Sat position Vector
L = Laser position vector

E

Figure 3.6. lllustration of the Separation Angle

Finding this angle is a fairly trivial matter:

B =cos™ [E_—L] (3.20)
1P|

However, forecasting the change of this angle with time is somewhat more involved.

3.7 Forecasting the Separation Angle

Previously, it was stated that the requirement exists to forecast the separation of
the laser with a given satellite up to 30 seconds into the future. In order to attempt such a

task, it is first necessary to know the rate of change of f3, as well as its acceleration.

50

3.7.1 Finding the Rate of Change of the Separation Angle

The rate of change of B is simply its derivative. Recall from equation 3.20 that:

>

B =cos™ (u) where u =%l 3.21)

Therefore, taking the derivative:

-1 d_u

} = 3.22
p — (3.22)
where ,
u=ﬁ;L and -@i= ﬁ;L+ﬁ;L_ﬁ-2L.ﬁ-ﬁ

9] at | gl 18l |p|* |l

From equation 3.22, the rate of change of 8 can now be computed, provided we can find
the rate of change of the unit laser direction vector L, and the rate of change of the
satellite position vector, p. Recall from equation 3.8 that the initial laser position is given

by its azimuth and elevation:

sin(El) R
L =] cos(El)sin(Az) |-| E
cos(El)cos(Az) | [N

Assume also that the rate of change and accelerations of the Azimuth and Elevation,
Az, AZ, El ,and El are also given. This is to be expected, as they will undoubtedly be

made available from the electrical current controlling the laser tracking mechanism. This

being the case, the rate of change of L is easily found by taking the derivative:
cos(El)Ei R
L=| cos(El)cos(Az)Az —sin(El) sin(Az)Ei | E (3.22)
N

—cos(El)cos(Az)Az —sin(El) cos(Az)El

51

Now all that remains is to find the rate of change of p. Recall from equations 3.1 through

3.4 that:

Prcr =Year —Rpg

R-i R.j Rk]|(p)
Pew = E-1 E-j Ek|-|p,
N-i N.j Nk|\|p,

Where i, j, and k are the X, Y and Z unit axis’ of the ECI frame, rgcy is the position of
the satellite, Rgcy is the position of the aircraft, and R, E, and N are the unit directions of
the REN frame. It stands to reason that the rate of change of p can be found in a similar

manner:

d d. _dg

ﬁECI =EEECI =;l,—t_i:ECI - dt ECI (3~23)

The reader may recall from Chapter 2 that the velocity of the platform has already been

derived in the ECI coordinate frame in equation 2.33:

3 cosé?g —sin 6, 0 0
SR,y =Vyy =|sin@, cosd, O / onr + 0 X Ryepr
dt 0 0] 27 rad

86164.09054 sec

Furthermore, the velocity of the satellite in the ECI frame can be extracted directly from
SGP4. Therefore all of the components necessary to find the rate of change of p in the
ECI frame are available. All that remains is to find this rate of change with respect to the

REN frame. This is done as is was previously, multiplying by the same conversion

52

matrix used to transfer the satellite position vector from the ECI frame into the REN

frame:
Ri R-j RKk|(p,Y
Prev =|E-i E-j E-k||p, (3.24)
Ni N.j N-k||p,

Armed with the rate of change of p and L, the rate of change of the separation angle

quickly follows from equation 3.22.

3.7.2 Finding the Acceleration of the Separation Angle

The only obstacle that remains in the quest to find an approximate forecast of the

separation angle, is to find the rate of change of the rate of change, or the acceleration of

the separation angle 8. Recall from equation 3.22 that:

Finding the acceleration, or the second derivative, of B requires taking the method used in
the previous section one step further, and finding the derivative of . It may be easier to

visualize the derivation of the acceleration by breaking the rate of change into two

smaller functions:

[3=u-v » (3.25)
where :
u= i and y= ﬁ;L+/3_L_[5-2L /3;[5

Bl 1l |pI* 1Al

53

From this it can be seen that:

B = udv +vdu (3.26)
where :
u= i and V= ﬁ_L+ﬁ;L—ﬁ_'2L /3‘;3

ol 1l |5 1Al

a2 —% o= '_ - oA oA
du=- 1—(L—] p-L+pL_pL A ‘(p L] and
7| I
dy = ﬁ'_L_Fﬁ;L_ﬁ'f 13'_13 +
B T
ﬁ-ij-li_ﬁ-i_[ﬁﬁ }L
1ol 1Al 1a” | 1el
p-p)[(2:6:£)(-5) [p-L+p-L])_
| 17 ol ol
p-L|[p-h b ﬁ_ﬁ-ﬁ[ﬁ b]
" J\ 18l 1Al e (Pl

This somewhat longer equation for the acceleration of 8 brings with it two more
terms that require further derivation. Just as finding B required finding L and p, so also

the derivation of fintroduces the variables Land p. Again, the derivation of the

acceleration of L follows from the derivation of the rate of change of L. Recall that:

cos(ENEI
L=| cos(El)cos(Az)Az —sin(El)sin(Az)EI
—cos(El) cos(Az) Az — sin(El) cos(Az)El

Z> = =

54

Therefore it follows that the acceleration of L will simply be the derivative with respect

to time of the rate of change:

cos(ElEI —sin(El)Ei - El

cos(El) cos(Az) Az — Az{cos(EI) sin(Az) Az + sin(El) cos(Az) Ei)~

sin(El)sin(Az) El - Ei(sin(El) cos(Az) Az + cos(El)sin(Az)Ei) (3.27)

qulH
Il
-
i
Z> = =

SYER

cos(EI)sin(Az) A% + Az(cos(EI) cos(Az) Az — sin(El)sin(Az) El)-
sin(El) cos(Az)El — Ei(cos(El) cos(Az)Ei - sin(El) sin(Az) Az2)

As stated previously, we have assumed that the acceleration of both the Az and the EI are
given. The only value left to derive is p. Realizing that this can be found in the ECI

frame and then converted to the REN frame in a similar manner as the rate of change

derivation allows computation of the acceleration in the ECI frame:

= d* _ d* _ d? -
Pea =?pEc1 =d7r5c1 —_d—t_—RECI (3.28)

Finding the acceleration, 7, of the satellite at any given position is fairly straightforward

in the ECI frame:
d2 ~ —ﬂ F .
e r= |r€|93 (3.29)

The gravitational constant for the Earth, fi,, is roughly 398601 km%/sec®. Recall that the

platform velocity in the ECI frame is:

cos@, —sinf, 0
REClz Sineg COSBg 0] RECEF-'_@GBXRECEF : (3.30)

0 0 1

&~
&=

Where o represents the angular rotation of the Earth as shown in equation 2.23. Because
the platform is flying a fixed course, intentional acceleration due to course change should
zero, or very close to zero. Thus we are left with only the Coriolis and Centripetal

accelerations in the acceleration derivative:

Pr cos@, -—sinf, 0 p
d71‘1m=2@x sinf, cosf, O 'ZEREC” + @ X (@ xRy) (331)
| 0 0 1

Both the first term in equation 3.31, the Coriolis acceleration, and the second term, the
Centripital acceleration, should be fairly small compared with the acceleration of the
satellite, because the platform will not be “moving” nearly as fast as the satellite with
respect to the ECI frame. Nonetheless, it has been decided to include the platform
acceleration in the calculation of p, ‘even if only for theoretical completeness, as its
inclusion does not significantly degrade software performance.- After finding the
acceleration of p in the ECI frame, it can also be translated to the REN frame using the

matrix employed in previous translations:

R-i R-j Rk|(p,
Prew =|E-1 E-j E-k||p, (3.32)
N-i N-j Nk||p,

We now have all of the components necessary to build an initial forecast using the
equations for 8, B,and f3, for the separation angle between the laser and the satellite at

some given time in the future.

56

3.7.3 The Forecast Method

Now that f, ,B,and [3 , have been found from initial conditions, there are a

number of ways to approximate 8 at a future time. The goal is to find the time (or times)
that the laser will pass closer than the error angle to the exact predicted position of the
satellite. Referring to Figure 3.6, the goal is to find any time in which the error angle, ¢,
is greater than or equal to the predicted value of B. Recognizing this, it can be seen that

the forecast for B fits into a second-order Taylor series expansion:

Bt)=a=B,+ BAt+%BAt2 (3.33)

and solving for t will gives us the times, if any, when intersects this region. This is
illustrated in Figure 3.7. In actuality, the motion of the satellite with respect to the plane

might better be described by a sine wave that varies in amplitude and frequency

B
" F

Figure 3.7. lllustration of a Satellite “Intersection”.

57

somewhere between zero and T radians as the days and weeks go by. However, for the
short amount of time with which this project is concerned, we are only interested in the
local minimums of this sine wave. These are the points of closest approach, and they can
be approximated by using a second order parabolic function as described in equation
3.33. Later, the accuracy of this approximation will be addressed, but for now, it will be
assumed that this approximation is accurate. To find the times at which this intersection

will occur, the error angle can be brought inside the quadratic:

B(t)=0=(B, —a)+ BAH% BAr? (3.34)

And the quadratic equation can then be used to solve for At:

_-Bx P’ -2-B(B,-0) (3.35)

At
B

There will always be two solutions for A¢. However, in many cases, these solutions will
be imaginary, because the terms inside the square root are negative. This would indicate
that the separation angle never exactly equals the error angle, and thus never crosses it.

A second case might consist of two negative values for Af, which would imply that the
laser position vector has already passed through the satellite error cone, and is now
headed away. The third case is that there is one positive root and one negative, which
implies that the laser position vector is currently in the laser cone. This will be the case
when f<a, and can be recognized before the quadratic roots are ever found. The fourth
case, in which Af has two positive values, is the case in which an intersection is forecast

to occur. These four cases are summarized in Table 3.2.

58

Table 3.2. The Meanings of the Quadratic Roots for At

Quadratic Roots Cause Intersection?

Laser never close enough to N
)) 0
intersect the satellite

Two Imaginary Roots

Laser pos vector is moving No

Two Positive Roots !
away from satellite

Laser pos vector is currently Yes

One Positive, One Negative . A .
intersecting the satellite

Laser pos vector is moving

Possibl
towards satellite ossibly

Two Negative Roots

The first three cases are fairly straightforward. Either an intersection will occur or
it will not. The fourth case however, demands a bit more attention. As an input to the
algorithm, the Time of Laze, Ty, describing the expected duration of the laze is an
important part of determining whether an intersection will occur. If the intersection is
forecast to occur outside of the lazing \;vindow:

T, <AT, | ' (3.36)
where represents the closest time to intersect, then, in fact, an intersection is not forecast

to occur. If this is not the case, then a forecasted intersection has occurred.

3.7.4 Accuracy of the Forecast Method

As mentioned previously, the method used to forecast the separation angle does
not model the separation of the laser and satellite position vectors accurately in all
situations. An example of an inaccuracy in the Forecast Method is illustrated in Figure
3.8. This figure shows the actual separation angles encountered in “close approach” of a
satellite with the laser position vector. The “true angle” was compiled by actually

interpolating the platform, laser, and satellite forward slowly in time, and plotting the

59

tablished as the “actual

1S 1S €S

separation angle, B at each point in time. The reason th

separation angle” is that the positions of each of the players is fairly well known at a

how well our function,

18

, and therefore B is equally definite. The unknown

1me

t

given

ing a Close

Angle Forecast Dur

ion

Separat

Approach

Actual Angle

= = = = Forecast Angle

= = wmError Angle

Seconds From Forecast

60

Figure 3.8. Comparing the Actual Separation Angle Encountered in
a Close Approach With the Forecasted Separation Angle

that uses f8 and f to anticipate its behavior, maps to the known behavior of . In the case

of Figure 3.8, the error angle was small, only about 0.075 degrees. Notice that at the time
=0 seconds into the forecast, the forecast angle and the actual separation angle
correspond almost perfectly. In fact the forecast angle matches the actual angle almost
exactly, until 5 seconds before the closest approach, at which time it diverges ever more
rapidly. Unfortunately, this is the period of time with which we are most concerned! The
reasons for this divergence are interrelated. First, we are not using an approximation
function that does not match exactly with the behavior of the actual angle. Second,
during the time of closest approach, the initial conditions no longer predict the separation
angle well. At this closest approach, the acceleration of the separation angle increases
dramatically, due in large part to the proximity of the two vectors as they pass each other.
This dramatic acceleration is seen in the rounded vertex of the actual separation angle.
However, with the forecast, the acceleration remains minimal, pushing the forecast to
actually intersect with the satellite at zero degrees of separation. This is, of course, a
virtual statistical impossibility, and should raise considerable suspicion as to the veracity
of the forecast. In fact it is to be expected that the forecast angle will deviate from the
actual separation angle in every forecast, as the initial conditions will eventually no
longer match actual conditions to the precision we require. For example, consider the 20-
second forecast shown in Figure 3.9. This forecast deals with a satellite position vector
that never gets closer than 40 degrees from the laser position vector. In this plot, it can be
seen that the forecast occurred at a time when the two vectors where actually separating
from each other. Despite their distance from each other, still the forecast deviates over

time, as expected. So what does it profit to use this forecasting method?

61

is that, in almost every case, the

1nt intersections

The benefit of using this method to pinpo

tion of an intersection, and will locate the

ive in its estimal

forecast will be conservat

closest approach time to within 2 seconds of the actual closest approach time.

Actual Angle
= = = Forecast Angle
Error Angle

Separation Angle Forecast for Far Approach

saalbaqg

o O
\%. qu.

N
O’

o

Q
P ® 1 & o0

Seconds From Forecast

Figure 3.9. lllustration of Forecasted Angle Deviation From Actual

Angle in a “Far Away” Satellite

62

Furthermore, the forecast will eliminate all but the most closely approaching satellite
vectors. Of course the extent to which other satellites are eliminated by the forecast
depends heavily upon the initial conditions. For example, having a laser turret slew lrate
of 10 degrees per second is likely to produce quite a few more “close-approach”
satellites, like the one illustrated in Figure 3.8, than would a normal operational turret
slew rate of, say, 1.5 degrees per second or less. Given the operational conditions, and
the turret slew rates necessary to track a missile moving a roughly 3 kilometers a second
at 100 kilometer range, it would be reasonable to expect that the turret would normally
track at a rate of one to two degrees per second. At this rate, it is also reasonable to
expect that the forecast method will eliminate at least 90% of the satellites in the list fed
to it. This leaves us with, at most, 10% of the satellites given to the Main Processor that

must be evaluated more closely.

3.8 Interpolation to Correct the Forecast

Now we have employed two filters to narrow the list of at-risk satellites. The
first, the ABLPA Preprocessor, can be expected to eliminate roughly 75 of every 100
satellites in an Qperational environment, depending, to some degree, upon the location of
the theater employment. If we start with the assumption that there are 1000 active
satellites, this now leaves 250 to evaluate. The second filter, the Forecast Filter, can be
expected to strain 90% of the remaining 250 and leave us with, at most, 25 at-risk
satellites. With so few satellites remaining, it now becomes feasible to use straight
interpolation of the separation angle for these few satellites over a given period of time.
Fortunately, the Forecast Filter also gives a good approximation for the time at which the

vertex, or the closest approach point of the satellite position vector to the laser position

63

vector, occurs. Knowing this, an interpolation can be set up using an Interpolation Time

Buffer and Interpolation Step Size as the parameters controlling the interpolation.

3.8.1 The Interpolation Time Buffer

Starting with the vertex, a time increment can be specified as a certain interval
before the forecasted vertex at which to begin interpolation. The vertex arrived at during
the forecast does not necessarily occur at the time of closest approach. For example,

Figure 3.10 illustrates the situation that will occur in almost all cases.

Forecasted

Closest

Approach B

Time Actual
Closest
Approach
Time

Interpolation Start:
= 2 Seconds Prior to
Forecasted Vertex

(9

~E

: -
t 14 15 Atsec

(o]

. Figure 3.10. Typical Early Vertex Forecast with a Two Second
Interpolation Buffer

In the typical forecast, when the satellite and laser approach each other within a few

degrees, the actual separation angle will look fairly linear until a few seconds before the

64

closest approach, much like a triangle with a rounded bottom corner. This is seen clearly
in the example given in Figure 3.8. With this type of function curve, typically the
forecast vertex will occur slightly before the actual vertex in time. This is seen in Figure
3.10. So why not simply begin interpolation at the forecast vertex and move forward
until the actual vertex is encountered? There are cases where the forecast vertex falls
after the actual vertex in time. The first case can occur if our forecast is done near the

vertex, before crossing the error angle. This is illustrated in Figure 3.11. Here, the

Actual Forecasted
Closest Closest
Approach Approach
Time B8 Time

Interpolation Start:
= 2 Seconds Prior to
Forecasted Vertex

-

‘(L
) -1 t 1 2 Atsec

Figure 3.11. Special Case Forecast Where Forecast Vertex Falls After
Actual Vertex in Time

forecast occurs at a critical time near the vertex, but before the separation angle is below

the error angle, so an initial check will not show the intersection, and the forecast will lie

65

beyond the actual vertex. It is for cases like this that a time buffer should be inserted
between the forecast vertex and the interpolation start time, to ensure that the
interpolation covers a big enough time block to include the actual vertex. Another case
that may allow the forecast vertex to occur before the actual one, is the case when the
error angle is much bigger. The example in Figure 3.10 is using an error angle that,
although it is not labeled, would be only about 0.1 degrees. According to earlier analysis,
however, it is anticipated that e&or angles of up to 1.15 degrees may be anticipated for
LEO satellites. This will raise the possibility of a separation function that intersects the
error angle at a higher degree. Such an event would cause the forecast to drift to the right
of the actual intersection. A third case could occur where both case 1 and 2 happen,
pushing the forecast even further ahead in time, although this is only a very remote
possibility. The best time buffer to use is best left to the analyst who is using the
algorithm. However, in this project, the time buffer was kept at two seconds. This buffer
size allowed the algorithm to handle every variation and case that was run, without
exception. This is not to say, however, that a case does nqt exist in which two seconds is
insufficient. For this reason, the time interpolation buffer length is an input to the

software, as opposed to a constant.

3.8.2 Interpolation Step Size

Another time increment, the interpolation step size, must also be specified. The step size
refers to the amount of time that transpires between samplings of the separation angle. It
is the step size that determines the precision of the interpolation. If the step size is too
big, then the true vertex may never be reached with enough precision to determine

whether or not it crosses the error angle boundary. This is the case in Figure 3.12. In this

66

figure, the step size is one second. It can be seen that, although the separation angle
crosses the error angle, The interpolated parabola never crosses the critical angle, and

thus the intersection is never registered.

B

04

A e e e, ———-—-———

-
At sec -

-

7

Figure 3.12. Interpolation With a Step Size that is Too Large

The obvious cure for this problem is to shorten the step size. However, this must be done
with care. Each step represents a complete analysis of the extent of Earth’s rotation,
platform movement, laser turret tracking and a call to SGP4 (or another ephemeris
propagator) to find the separation angle. If the step size is reduced from one second to

0.0001 seconds, then we have increased the number of analyses by a factor of ten

67

thousand (per satellite)! Our dilemma then, is to find the step size with enough precision
to satisfy requirements. Figure 3.13 presents the same parabola as in Figure 3.12, but
with exactly one-half the step size. Fortunately, the precision increases significantly as

the step size decreases.

P A

-
At sec

-~

t 1 2 3 4 5 6 7

Figure 3.13. Decreasing Step Size Increases Precision

This project was tested with a step size of 0.1 seconds. This increment caught every
satellite correctly for every operational scenario tested. Again, this is not to say that 01
seconds is necessarily the optimum increment, only that it worked flawlessly during

testing. |

68

3.9 Main Processor Methodology Conclusion

With this summary the theory and methodology used in this Predictive Avoidance
project is concluded. While the previous pages focus on the algorithm that was
developed for this project, Chapter IV — Software Development will attempt to describe
the actual application of this algorithm in a software development project. Analysis of
the algorithms presented in these _last two chapters shall be fully addressed in Chapter V -

Analysis and Conclusions.

69

IV. Software Development

The software by which the algorithms discussed previously can be used
practically is discussed briefly in this chapter. For a more comprehensive discussion of
the software implementation, the reader may wish to refer to Appendices A-F. The
Predictive Avoidance software has been written with the intent that it may be used within
the fire control system of the Anti-Ballistic missile Laser (ABL) currently being
developed by the Boeing Corporation. The software has been written in a modular
format, and has been broken into logically functional modules that have been designed to
work both together and independently, if needed. As mentioned in the Introduction, this
software package has been designed with three conflicting (but important) objectives.
The first objective is to make the software readily understandable to a person who wishes
to study it in the future. The package is designed with an agreement by Boeing that it
will be studied and at least partially incorporated directly into the BC/FC of the ABL
platform. Therefore, to ensure a smooth incorporation into the ABL project, the most
important consideration is that an engineer can survey the code and easily understand its
content and purpose. The second goal is that the software be fast. It is estimated that the
prediction avoidance software should not need more than 0.5 seconds to fully process a
mission. Therefore algorithms should be designed to minimize processing time. The
third major goal for the PA software is that it should be modular. Of these three goals for
the software, understandability is the by far the most important. There are many cases
within the software in which a fluid, slow, understandable implementation has been used

instead of a speedier vague implementation. This is done with the understanding that the

70

software will be reviewed at a later time, when any “slow” algorithms may be supplanted
with the software engineer’s choice of implementations. The standard flow of the

software is shown in Figure 4.1.

A TLE File containing
the satellites that have
been determined will
intersect the laser in a
given time.

Situation Inputs

/ﬂ_\ Time, Platform
\—/ Position, etc. Intersect File

TLE Input File From

Space Command ABLPA Preprocessor ABLPA
Preprocessor Output Main Processor
(All Active Satellites)

_/ Close Approach

_/ File
A TLEFile containing A TLE File containing
only those satellites that

e the satellites that are
are in view of the

:) close enough to
platform during a given interpolate.
time period.

Figure 4.1. The Predictive Avoidance Software Flow

4.1 Modularity and Testing

A_s mentioned previously, modularity is a goal for this software package.
Although the software package has been broken into two separate entities, namely the
Preprocessor and the Main Processor, the modules that compose this project have been
grouped together into twelve smaller libraries, by their logical functionality. The reason

for this breakdown is simple. The project as a whole is difficult to test as a whole.

71

Breaking down the project into twelve testable mini-projects allows independent testing
of a portion of the software while divorcing it from the whole. The benefits to this are
intuitively obvious. Understandability and testability are increased, however, creation of
this type of infrastructure in the project has also required that the code be that much
larger, with more physical modules and interfaces. Each library is distinguished by
having its own stand-alone GUI that calls the module(s) being used in that library. As
implied before, there will be twelve software libraries total. Two of these will be the
final ABLPA Preprocessor and Main Processor. The other ten will be composed of lower
and lower levels of subordinate modules; five testing modules in the Preprocessor, and
five more introduced in the Main Processor. The overall structure of the software is

addressed with more depth in Appendix A — Software Structure.

4.2 The Calculation Modules

The modules that house the meat of the algorithm and the calculation intensive

software are written in the C++ language. The compiler used is Borland C++ Builder 3

(Standard, C++ Version 5). It is likely that the code for these modules can be recompiled
with minimal effort using another similar C++ compiler. These modules are written for
easy adaptability to other environments. All of the code for the calculation modules will
be included and discussed, as its explanation and operation is one of the important
products that this thesis delivers. Appendix B - The ABLPA Preprocessor Software will
discuss all modules developed for the ABLPA Preprocessor. Appendix C - The ABLPA
Main Processor Software will discuss modules developed for the Main Processor that

have not already been covered in Appendix B.

72

4.3 The Test Modules for Each Software Library

- There are other modules that have been developed exclusively for the task of
calling and interfacing with the Preprocessor the Main Processor, and each of the other
ten libraries. They are strictly “front-end” interfaces for the calculation modules that can
be used to run and test the algorithms that have been developed within the calculation
modules. These test modules have been kept as “simple” as possible, while still
maintaining ease-of-use, to avoid the necessity of “testing” the test modules. They
consist of a graphical interface that collects input to the module(s) being tested, and the
function call to those modules. The graphical nature of the test modules utilizes quite a
bit of compiler-specific organization and terminology to allow easy development of these
modules. Therefore, any change or recompilation of these graphical interface modules
will require the user to have a copy of Borland C++ Builder 3 (Standard). This compiler
will also be required if the user of this software wishes to run the fully compiled software
packages that have included within them the GUI interfaces. The Test Modules and their

software code is described further in Appendix E.

4.4 The Environment

These modules have all been developed using a standard desktop IBM compatible
computer, using a 200 MHz Intel Pentium processor. The modules are compiled to run in
the Microsoft Windows 95 or 98 operating system environment. Operation in other
environments has not been tested and is not guaranteed, especially the graphical test

modules.

73

4.5 Sample Interfaces

As mentioned previously, the product, C++ Builder 3, made by Borland was used
to craft a graphical front-end to each application designed. One GUI has been created for
each functional task (or library) needed in the Preprocessor and Main Processor. Each of
these modules, where practical, comes with a graphical front-end interface to allow

testing of individual components. Both the Preprocessor and the Main Processor have

Figure 4.2. GUI Interface to the Preprocessor

similar interfaces. The Preprocessor interface is shown in Figure 4.2. the inputs and
outputs can be clearly seen and modified using this interface. It should be noted that
these interfaces, although easy to use, will almost certainly not be included in the final

software package to be used on board the ABL platform. They take up far too much

74

Figure 4.3. GUI Interface to the Main Processor

overhead processing to be practical, and it is likely that the PA software will be executed
automatically, at laze time, not using a man/machine graphical interface. Rather, the
main purpose of these interfaces is to allow an easier testing environment in which
parameters can be _changcd quickly and output can be seen in a formatted framework.
The interface to the Main processor is similar to that of the Preprocessor, and can be seen
in Figure 4.3. Again, Appendices A-F will provide a more complete description of the
modules, interfaces, inputs and outputs for the software package discussed briefly here.

An analysis of the software will follow in Chapter V.

75

V. Analysis and Conclusions

Now that the methodology of the Predictive Avoidance algorithm has been
developed and discussed, and software has been created to automate this algorithm, we
must now evaluate whether or not all of the goals of this study have been achieved. The
rea(ier will recall that the two main goals of this study were to develop a predictive
avoidance algorithm, and to develop a software system that can automate this algorithm
using less than 0.5 seconds during the pre-laze fire sequenice. The analysis of the
software in the following sections addresses how well the algorithm and software meets
these goals. Areas where there may be room for improvement will also be discussed.
Due to time constraints, the optimal solution to some problems encountered in this
project may have been bypassed by using more convenient methods. Although it is
hoped that there are not many such areas, some were a necessity to ensure this product
was delivered on time. Recognizing that this thesis is only the first draft of an iterative
process conducted by Boeing, it is hoped that these “lacking” areas will be further studied

and refined in future iterations.

5.1 Software Analysis and Performance

Numerous tests were conducted upon each software library module individually,
and upon the integrated Preprocessor and Main Processor. For brevity, the individual
module testing will not be discussed except to say that individual test cases were
compiled to analyze each module, including extensive boundary and critical value
testing. Each module was required to pass all test cases before being integrated. It must

be stressed here that SGP4 was heavily relied upon, but not tested. This is the only

76

module that was not tested, because of its complexity, historical verification, and

difficulty of independent verification and validation.

5.1.1 Integration Testing

After each module was independently tested and verified, the integrated
Preprocessor and Main Processor were tested using interface and boundary tests that
ensured the outputs received during individual module testing were being integrated into
the proper format, without corrupting data across the interfaces. Final integration testing
included roughly 2,000 — 2,500 individual executions of both the Preprocessor and the
Main Processor. Only approximately 100 of these runs were used to verify (via
independent calculations) the correctness of the output. These 100 runs incorporated
changes in the location of the platform, speed, turret rates, and times of laze. It is not
beneficial to list every test here, as the software needsv to be verified by an independent
third party regardless. However, the performance of the software in general, and

performance under some tests will be briefly discussed.

5.1.2 Preprocessor Software Filtering Performance

A sampie TLE satellite input file was used containing 772 unclassified satellite
listings. The Preprocessor found, on average, that 22% of these input satellites were in
view. By changing the location of the platform and the Universal Time of execution,
testing concluded that the maximum number of‘ satellites ever deemed in view of the
platform was 209 (or 27.1%) at the location 5° Latitude, 100°‘Longitude, on August 14,
1998, 03:58 AM GMT. Of course, not every time and location were tested, and so this

maximum percentage might rise slightly, but not much. The fewest number of satellites

77

seen in view is 78 (or 10.1%) at the South Pole during the same time slot. Of course, the
polar caps are not of great interest, as it is unlikely that the ABL will ever see the poles,
and a polar location precludes the possibility of encountering any satellites within the

Geostationary Belt.

5.1.3 Preprocessor Software Timing Performance

Given the input file of 772 satellites, the Preprocessor executed, on average, in 1.2
seconds Wall Clock Time (WCT). This test was conducted on a standard 200 MHz IBM
compatible desktop computer, running under the Microsoft Windows 98 OS. The WCT
differed between 0.9 and 1.8 seconds, depending upon the CPU load exerted by other
applications at the time of the test. WCT will depend heavily upon the syétem used to
run the Preprocessor. Although the Preprocessor is not required to run within a given
time budget, it is good to know that it is fairly quick and can be run mhltiple times in a |
minute, if needed. The graphical interface and the input/output files constitute a large
part of this WCT. It is clear that WCT will be substantially reduced when the GUI is

stripped off, and the I/O is handled in memory rather than through disk read/writes.

5.1.4 Main Processor Software Filtering Performance

For a given sample test, where the platform was located at 0° Latitude, 0°
Longitude, the sample TLE satellite input file was used, containing 772 unclassified
satellite listings. This is the file that the Main Processor would encounter if no
Preprocessing was accomplished ahead of time. The Main Preprocessor found that 17 (or
2.2%) of these input satellites were close enough to interpolate (17 satellites were

interpolated). By changing the location of the platform and the Universal Time of

78

execution, testing concluded that the maximum number of satellites ever close enough to
be interpolated was 18 (Or 2.3% of the active satellite file), so this sample test is
approaching the maximum number of close-approach satellites that have been seen in any
test. Again, not every time and location were tested, and so this maximum number may
be exceeded somewhere, but not by much. When preprocessing is performed, the input
file to the Main Processor drops to 198 satellites (the satellites that are in view), which is
still a somewhat high concentration. When the Main Processor analyzed this new input
file, it found 16 (rather than the expected 17) close-approach satellites. It is expected that
the number of close-approach satellites should not change, because preprocessing only
strips away satellites that could not possibly intersect the laser. The reason for this
discrepancy is that one of the 17 satellites that was forecast to intersect the laser was on
the other side of the Earth, but during the exact moment of the forecast was accelerating
at a very fast rate toward the laser. When this fast acceleration (which in reality lasts
only fractions of a second) is propagated 30 seconds into the future, it results in an
unrealistic forecast that is quickly weeded out using interpolation. At no time during
random testing was an actual intersection recorded. Rather the intersection tests had to
be engineered and manipulated by the tester, because of the extremely low probabilities
of an actual intersection. There were no test cases developed, engineered or random, that

could produce more than one intersected satellite.

5.1.5 Main Processor Software Timing Performance

Given the unprocessed input file of 772 satellites, the Main Processor executed,
on average, in 0.9 seconds WCT. This test was conducted on the same computer as the

Preprocessor. When given the preprocessed file of 198 in-view satellites, the Main

79

Processor execution time dropped down to 0.25 seconds WCT. Again, WCT will be
substantially reduced when the GUI is stripped off, and the faster memory I/O is used.
The reader will recall that the requirement for execution is 0.5 seconds, so there is plenty

of room for additions/modifications to the software.

5.2 Further Study

There are a number of areas that may require further study, and have not been
thoroughly considered in this thesis. It is hoped that these topics will be addressed during
future iterations in the development of the final software package to be used with the

ABL platform. These topics are only briefly addressed here.

5.2.1 Missile Tracking

Currently, the software treats the missile trajectory as a static entity, with initial
parameters that do not change. This is reflected in the laser turret position, velocity and
acceleration variables which are read at forecast time, and held constant throughout the
forecast duration, as long as thirty seconds. It is unreasonable to believe that these
parameters cannot vary while the missile is in the boost phase. Different ballistic missile
systems have burn rates that vary significantly throughout the duration of the burn.
While the initial acceleration may not change, there is also a good probability that it will
change. A significant change from initial conditions will, of course, invalidate a forecast
that is based on those initial conditions. There are at least two feasible methods to
counter this variance from initial conditions. The first method is to store another data file
that accurately describes the burn rates of all possible missile targets, and use this

information to more accurately predict missile trajectory. The second suggested method

80

is to simply rerun the Main Processor when and if the actual conditions change from the
initial conditions by some slight error angle, and then include that slight error angle in the
forecast error angle alrcédy computed for the scenario. Using this method, the Main
Processor would re-execute during the laze only if the initial conditions are seriously
compromised by the actual missile trajectory. Although there is an extremely remote
possibility that this recomputation could result in laze interruption, this is unlikely, given
the fact that 2000 random runs of the Main Processor have not produced a single
intersection yet. Even if an intersection was predicted, the decision to terminate the laze
still rests in comparing the importance of the target to the importance of the compromised

satellite. This second solution’s strength is that it is easily implemented and tested.

5.2.2 Atmospheric Refraction

As laser energy travels through the atmosphere, it éncountcrs differing
atmospheric densities until it reaches the relatively empty vacuum of space. As light
encounters these differing densities, the index of refraction of the medium (air) changes,
causing the leading edge of the beam to travel at a slightly different speed than the
trailing edge. Over a large distance, this can cause the beam to arc (or refract) sllightly
until it reaches space. Quick calculations show that this arc may cause as much as a 0.4
degree change within the atmosphere for small slant angles traveling a long distance
before hitting the vacuum of space. This degree change would then be further added to
as the beam propagates at its new trajectory through space. This refractive issue is a
challenge that was encountered too late to incorporate into this iteration, but it is still
extremely important. The solution is, of course, to account for this refraction given the

location of the platform and the starting parameters of the laser turret. Although the

31

refractive index of air varies from location to location, for our purposes, it can be held

~ constant over given altitudes with only minor errors in the refraction calculation.

5.2.3 Error Angle Determination

Currently, the error angle for a given satellite encounter is computed using rough
position error approximations. This results in an error angle that is an absolute. That is,
we can either hit it or miss it. Further the error angle describes a spherical comfort zone
around the satellite when in fact, the error ellipsoid should probably be more oblong and
eccentric given the types of errors encountered. One possible solution to further define
the error ellipsoid is to use covariance matrices to model each of the position error
ellipsoids, resulting in a more probabilistic definition of the comfort zone around the
satellite that we wish to avoid. The difficulties with this solution lie in the population of
each covariance matrix, and the definition of exactly what probability is “too high” a risk
when describing the approach of the laser to the satellite. Because this solution would
have added a significant time cost with marginal fidelity improvement, it was decided to

forego this method in favor of the simpler half-error angle approach.

5.2.4 Forecast/Interpolation Fine Tuning

Currently the Main Processor does a rough forecast that interprets more satellites
being intersected that are actually intersected, and then interpolates the position of each
“intersecting” satellite to ensure that it actually does intersect. During testing of the Main
Processor, no satellites that approached close enough to the laser to possibly be
threatened were ever “not caught” by the initial forecast. This is not to say that it could

not happen however. Independent calculations have shown that, theoretically, a small

82

possibility exists that a LEO range satellite with a large error angle could possibly slip by
if the satellites comfort zone (error angle) is just barely touched by the laser turret angle
in the first 0.3 seconds after the forecast is conceived. In this case, there is a small
possibility that the initial conditions would be derived near the vertex, and that the
forecast closest approach angle is predicted to occur long after it actually has occurred.
This is a problem because there is a set “Interpolation Buffer Time” before the forecast
closest approach starts when thé interpolation begins. If the time between the forecast
closest approach and the actual closest approach is greater than this buffer time, then
interpolation will not catch an intersection that occurs at the actual closest approach time.
This has not occurred in any test cases, and attempts to engineer such a case failed
repeatedly due to the time and precision needed to model such an approach. This is not
to say, however, that it is impossible. A possible solution might be to increase the buffer,
which only slightly affects the overall run-time (depending upon the step size). Further,
attempts should be made to refine the interpolation step size. During testing, it became
evident that 0.1 seconds was adequate for the precision needed, without compromising
too much efﬁciency.. This is not to say, however, that 0.1 seconds is the optimum size,

nor that it will catch every possible intersection.

5.2.5 Software Speed and Testing

As mentioned previously, this software was not necessarily written to have the
fastest possible execution time. Rather, the primary goal was to write the software so that
it is easily understandable. This often involved coding an algorithm using an inefficient
implementation so that it matched (both functionally and visually) the methodology as it

is presented in this thesis, rather than using an elegant but fuzzy solution. Because this

83

code was designed and implemented with the understanding that it would be just the first
step of an iterative solution, understandability was considered the highest priority to
ensure a successful handoff. Testing is likewise considered to be iterative. Although
considerable in-house testing was completed by the author, it was a one-man effort. One
man does not make a very dynamic testing team, especially when that one man is the
designer, coder, and verification/validation checker! That man, though disciplined, is
bound to have his own biases and iterative mistakes that cannot be cross-checked with
anyone else. Therefore the value of the testing conducted by him is diminished, and

mistakes are likely to still exist.

5.3 Conclusion

There has been much ground covered here, and it is hoped that the Predictive
Avoidance algorithm and its corresponding software will prove to be useful in future .
modeling efforts. Although this thesis applies fo a narrow appliéation platform, namely
the ABL, it can be seen that the general algorithm is broadly applicable to a wide range of
directed-energy targeting applications. For instance, setting the platform speed and
altitude to zero will result in a land-based model for predictive avoidance. It is likely that
directed—energy weapons will become more widespread if the technology can be
adequately exploited with the first operational ABL series. If so, the general principles

tied together in this thesis will find broader application.

84

Appendix A - The Software Structure

The software implementation by which the algorithms discussed previously can
be automated is discussed in this appendix. This appendix, combined with the following
appendices, comprise a rough software programmer’s manual. The softwaré has been
written in a modular format, and has been broken into logically functional modules that
have been designed to work both together and independently, if needed. As mentioned in
Chapter 1V, this software package has been designed with three conflicting objectives.
The first objective is to make the software readily understandable to a person who wishes
to study it in the future. The second goal is that the software be fast. It is estimated that
the prediction avoidance software should not need more than 0.5 seconds to fully process
a mission. The third major goal for the PA software is that it should be modular. Of these
three goals for the software, understandability is the by far the most important. There are
many cases within the software in which a fluid, slow, understandable implementation
has been used instead of a speedier vague implementation. This is done with the
understanding that the software will be reyiewed at a later time, when any “slow”
algorithms may be supplanted with the software engineer’s choice of implementations.

The standard flow of the software is shown in Figure A.1.

Al Modﬁlarity and Testing

As mentioned previously, modularity is a goal for this software package.
Although the software package has been broken into two separate entities, namely the
Preprocessor and the Main Processor, the modules that compose this project have been

grouped together into twelve smaller libraries, by their logical functionality. The reason

85

A TLE File containing
the satellites that have
been determined will
intersect the laser in a
given time.

Situation Inputs

A Time, Platform
v Position, etc. Intersect File

TLE Input File From
Space Command ABLPA Preprocessor ABLPA
Preprocessor Output Main Processor

(All Active Satellites)

_~___,/ Close Approach
_—/ File

A TLE File containing A TLE File containing
only those satellites that the satellites that are
are in view of the close enough to
platform during a given interpolate.

time period.

Figure A.1. The Predictive Avoidance Software Flow
for this breakdown is simple. The project as a whole is difficult to test as a whole.
Breaking down the project into twelve testable mini-projects allows independent testing
of a portion of the software while divorcing it from the whole. The beneﬁté to this are
intuitively obvious. Understandability and testability are increased, however, creation of
this type of infrastructure in the project has also required that the code be that much
larger, with more physical modules and interfaces. Each library is distinguished by
having its own stand-alone GUI that calls the module(s) being used in that library. As
implied before, there will be twelve software libraries total. Two of these will be the
final ABLPA Preprocessor and Main Processor. The other ten will be composed of lower
and lower levels of subordinate modules; five testing modules in the Preprocessor, and

five more introduced in the Main Processor.

86

A.2 The Calculation 'Modules

The modules that house the meat of the algorithm and the calculation intensive

software are written in the C++ language. The compiler used is Borland C++ Builder 3

(Standard, C++ Version 5). It is likely that the code for these modules can be recompiled
with minimal effort using another similar C++ compiler. These modules are written for
easy adaptability to other environments. All of the code for the calculation modules will
be included and discussed, as its explanation and operation is one of the important
products that this thesis delivers. Appendix B - The ABLPA Preprocessor Software will
discuss all modules developed for the ABLPA Preprocessor, along with their
corresponding interface parameters. Appendix C - The ABLPA Main Processor
Software will discuss modules developed for the Main Processor that have not already
been covered in Appendix B. The actual implementation code listings for the calulation

modules is given in Appendix D — Implementation Code.

A.3 The Test Modules for Each Software Library

There are other modules that have been developed exclusively for the task of
calling and interfacing with the Preprocessor the Main Processor, and each of the other
ten libraries. They are strictly “front-end” interfaces for the calculation modules that can
be used to run and test the algorithms that have been developed within the calculation
modules. These test modules have been kept as “simple” as possible, while still
maintaining ease-of-use, to avoid the necessity of “testing” the test modules. They
consist of a graphical interface that collects input to the module(s) being tested, and the

function call to those modules. The graphical nature of the test modules utilizes quite a

87

bit of compiler-specific organization and terminology to allow easy development of these
modules. Therefore, any change or recompilation of these graphical interface modules
will require the user to have a copy of Borland C++ Builder 3 (Standard). This compiler
will also be required if the user of this software wishes to run the fully compiled software
packages that have included within them the GUI interfaces. The Test Modules and their

software code is described further in Appendix E — Test Module Code.

A.4 The Environment

These modules have all been developed using a standard desktop IBM compatible
computer, using a 200 MHz Intel Pentium processor. The modules are compiled to run in
the Microsoft Windows 95 or 98 operating system environment. Operation in other
environments has not been tested and is not guaranteed, especially fhc graphical test

modules.

A.S Test Module Example

As mentioned previously, the product, C++ Builder 3, made by Borland was used
to craft a graphical front-end to each library designed. One GUI has been created for
each functional-task (or library) needed in the Preprocessor and Main Processor. Each of
these modules, where practical, comes with a graphical front-end interface to allow
testing of individual components. This test rﬁodule example is included to give the user
an idea of the désign of each front-end. Each .front-end is designed simply, without
contributing to the solution of the algorithm handled by the module being called.

Because each of these test modules have little worth in themselves, I will demonstrate

38

how just one of the test modules work, and only include a cursory graphical figure when
describing test modules in the future. The module chosen to describe the interface here is
the module that interfaces directly with the SGP4 time propagation modules. This GUI
routine tests modules in the library “SGP4Support”. The main calculation module
(“CallSGP4”) is held within “SGP4SupportModules.cpp”. This module, in turn, calls the
SGP4 routines created by Air Force Space Command, which are held in
“SGP4Routines.cpp”. The test module Graphical User Interface (GUI) used to call this
main routine is called “SGP4TestForm”, held in a physical module of the same name.

The graphical interface is shown in Figure A.2.

Figure A.2. GUI Interface to the “SGP4 Support” Project

89

A.5.1 Description of Code

The code for SGP4TestForm is only partially included here. A software
programmer will notice that much of the code infrastructure is missing. This is because
C Builder handles much of the behind-the-scenes programming and leaves only the
event-handlers for implementation by the programmer. So, in reality only the event-
handlers are shown in the code that follows. An “event-handler” is anything that can be
manipulated. For instance, any button that can be “pushed” on the GUI may have a small
routine, called an event-handler, which executes a set of instructions. Having only the
event handlers in a condensed piece of code allows the maintainer to easily grasp and
change the nature of the GUL. There are a few things to point out in the code that
follows. First, there are two main event-handlers associated with this GUI. Their names
are “FileButtonClick” and “RunButtonClick”. This is appropriate because the GUI
template in Figure A.1 has exactly two buttons that can be pushed. The First button is the
“Propagate Using File” button that activates the “FileButtonClick” event-handler, the
second is the “Run SGP4 (Version3.01)” button that activates the “RunButtonClick”
event-handler. Notice that each routine is fairly simple and straight-forward. There is no
attempt to solve any part of the Predictive Avoidance algorithm within the event-handler
itself. Rather, they simply make a call to the routines that do the work. The sole purpose
of the even't-handler is to take inputs, call a calculation module, and format the resulting
output. For instance, RunButtonClick simply calls the module “CallSGP4”.
FileButtonClick calls “ReadTLEFile”. So these test GUIs can be seen to be simply
interfaces that allow easy, extensive testing of the calculation modules, which house the

meat of the project. The code follows on the next few pages.

90

A.5.2 Code Listing for SGP4TestForm

/*******************-k**/

/* MODULE NAME: SGPATestForm.cpp */
/* AUTHOR: Captain David Vloedman */
/* DATE CREATED: October 10, 1998 */
/* */
/* PURPOSE: This test form module is a test module for the routines */
/* handle calling of the satellite propagator. "SGP4". This*/
/* propagator is US Space Command's satellite time/position*/
/* propagator using general perturbations only. The */
/* version of SGP4 used here is version 3.01 in C */
/* */
/* */
/* COMPILER: Borland C++ Builder3 Standard version */
/* This compiler should be used to compile and link. */
/* */

/**/

/*********************************/

/* C++BUILDER-SPECIFIC LIBRARIES */
/*********************************/
#include <vecl.h>

#pragma hdrstop

#pragma package(smart_init)

#pragma resource "*.dfm"
/****************'k****************/

/* USER-BUILT LIBRARIES */
/*********************************/
#include "SGP4TestForm.h"

#include "SGP4SupportModules.h"
#include "LaserConstants.h"
#include "Satellite.h"

#include "BErrorStructure.h"
#include "TLEInput.h"

/*********************************/

/* C STANDARD LIBRARIES */
/*********************************/
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <iostream.h>

#include <conio.h>

#include "SGP4Routines.h"

#include "TimeModules.h"
/*******************************/

/* CREATE THE FORM */

/*******************************/
TForml *Forml;

f m e e e e e
___fastcall TFofml::TForml(TComponent* Owner)
TForm(Owner)
{
}

/***/

/* THIS EVENT HANDLER PROCEDURE HANDLES THE BUTTON*/

/* THAT CAN LOAD A TEST CASE FROM A FILE FOR LATER*/

/* EXECUTION */
/*************************-k*************************/
void ___fastcall TForml::FileButtonClick(TObject *Sender)
{

91

ErrorStructure ErrorList;
SatStructure *SatArray = new SatStructure;

char Errors[MAXERRORS] [MAXMESSAGELENGTH] ;

int i;

ErrorStructure *ErrorPtr=&ErrorList; /* A POINTER TO ERRORLIST */
char FileName [MAXNAMELENGTH] = " ";

/***/

/* GET NAME OF FILE TO READ TEST CASE FROM */

/***/

strcpy (FileName, FileEdit->Text.c_str());

/***/

/* READ ALL SATELLITES FROM THE FILE, AND USE THE */
/* FIRST SATELLITE IN THE FILE AS THE TEST CASE */
/***/
ReadTLEFile (FileName,
*SatArray,
*BErrorPtr);
/***/
/* NOTE THE Sat[0] IS THE FIRST SATELLITE IN THE */
/* FILE */
/***/
SSCEdit->Text = String(SatArray->Sat[0].GetSSCNumber());
ClassEdit->Text = String(SatArray->Sat[0].GetSecurityClass());
IntIDEdit->Text = String(SatArray->Sat[0].GetInternationalID()):
EpochYearEdit->Text = String(SatArray->Sat[0].GetEpochYear());
EpochDayEdit->Text = String(double(SatArray->Sat[0].GetEpochDay()));
RevSquaredEdit->Text = String(double(SatArray->Sat[0].GetRevSquared()));
RevCubedEdit->Text = String(double(SatArray->Sat[0].GetRevCubed()));
BStarEdit->Text = String(double(SatArray->Sat[0].GetBStarDrag())):
EphemerisTypeEdit->Text = String(SatArray->Sat[0].GetEphemerisType());
ElSetEdit->Text = String(SatArray->Sat[0].GetElementSetNumber());
InclinationEdit->Text = String(double(SatArray->Sat[0].GetInclination()));
RightAscensionEdit->Text=String(double(SatArray-
>Sat[0] .GetRightAscension()));
EccentricityEdit->Text = String(double(SatArray-
>Sat[0] .GetEccentricity()));
ArgumentOfPerigeeEdit->Text = String(double(SatArray-
>Sat[0] .GetArgumentOfPerigee()));
MeanAnomalyEdit->Text = String(double(SatArray->Sat[0].GetMeanAnomaly()));
MeanMotionEdit->Text = String(double(SatArray->Sat[0].GetMeanMotion()));
RevNumberEdit->Text = String(SatArray->Sat[0].GetRevAtEpoch());

/***/

/* DISPLAY ALL ERRORS */

/*************************-k*************************/

CreateDisplayText (ErroxrList, Errors);
if (ErrorList.TotalErrors() !=0)

{
ErrorMemoBox->Lines->Clear () ;
ErrorMemoBox->Lines->Add ("THERE ARE ERRORS...");
for (i = 0; i<ErrorList.TotalErrors(); i++)
ErrorMemoBox->Lines->Add (Errors[i]);
}
else

{ ErrorMemoBox->Lines->Clear () ;
ErrorMemoBox->Lines->Add("No Errors...");

}

92

}

/***/

/* THIS PROCEDURE ACTUALLY RUNS THE TEST CASE AS */
/* IT HAS BEEN ENTERED INTO THE FORM AND DISPLAYS */
/* THE RESULTS OF THE RUN */
/***/
void ___fastcall TForml::RunButtonClick{TObject *Sender)
(i

ErrorStructure ErrorlList;

ErrorStructure *ErrorPtr=&ErrorList; /* A POINTER TO ERRORLIST */

Satellite* Sat;

Sat = new Satellite;

char Errors[MAXERRORS] [MAXMESSAGELENGTH] ;

int 1i;

char buff [MAXNAMELENGTH] ;

double JulianDate; .

double 1Inclination;

double *InclinationPtr = &Inclination;

double RightAscension;

double *RightAscensionPtr = &RightAscension;

double Eccentricity;

double *EccentricityPtr = &Eccentricity;

double MeanMotion;

double *MeanMotionPtr = &MeanMotion;

double ArgumentOfPerigee;

double *ArgumentOfPerigeePtr = &ArgumentOfPerigee;

double MeanAnomaly;

double *MeanAnomalyPtr = &MeanAnomaly;

double X;
double *XPtr = &X;
double Y;
double *YPtr = &Y;
double Z;

double *ZPtr = &Z;

double Xdot;

double *XdotPtr = &Xdot;
double Ydot;

double *YdotPtr = &Ydot;
double Zdot;

double *ZdotPtr = Ż
double Delta;

double *DeltaPtr = Δ

/***/

/* GET SATELLITE EPHEMERIS INFORMATION */
/*****i***************************************/
Sat->SetSSCNumber (SSCEdit->Text.ToInt ());

strcpy (buff,ClassEdit->Text.c_str());
Sat->SetSecurityClass (buff);

strcpy (buff, IntIDEdit->Text.c_str());
Sat->SetInternationalID(buff);

Sat->SetEpochYear (EpochYearEdit->Text.ToInt());
Sat->SetEpochDay (EpochDayEdit->Text.ToDouble()) ;
Sat->SetRevSquared (RevSquaredEdit->Text.ToDouble()) ;
Sat->SetRevCubed (RevCubedEdit->Text.ToDouble());
Sat->SetBStarDrag (BStarEdit->Text.ToDouble());
Sat->SetEphemerisType (EphemerisTypeEdit->Text.ToInt());
Sat->SetElementSetNumber (El1SetEdit->Text.ToInt());

93

Sat->SetInclination{InclinationEdit->Text.ToDouble());
Sat->SetRightAscension(RightAscensionEdit->Text.ToDouble());
Sat->SetEccentricity(EccentricityEdit->Text.ToDouble());
Sat->SetArgumentOfPerigee (ArgumentOfPerigeeEdit->Text.ToDouble());
Sat->SetMeanAnomaly (MeanAnomalyEdit->Text.ToDouble());
Sat->SetMeanMotion (MeanMotionEdit->Text.ToDouble());
Sat->SetRevAtEpoch (RevNumberEdit->Text.ToInt(});

JulianDate = JulianDateEdit->Text.ToDouble();

/****************'k***‘*’k*****************************/

/* MAKE A CALL TO THE SGP4 PROPAGATOR */
/***/
CallsGP4 (*Sat,

JulianDate,

*Xptr,

*YPtr,

*ZPtr,

*XdotPtr,

*YdotPtr,

*ZdotPtr,

*InclinationPtr,

*RightAscensionPtr,

*EccentricityPtr,

*MeanMotionPtr,

*ArgumentOfPerigeePtr,

*MeanAnomalyPtr,

*DeltaPtr,

*ErrorPtr) ;

/***/

/* Convert Mean Motion from radians/sec to */
/* revolutions per day */
/***/

MeanMotion = MeanMotion * MINUTESPERDAY / TWOPI;

/***/

/* DISPLAY THE RESULTS OBTAINED FROM SGP4 */
/***/
XEdit->Text = String(X);
YEdit->Text String(Y);
ZEdit->Text = String(Z):;
XdotEdit->Text = String(Xdot);
YdotEdit->Text String(Ydot);
ZdotEdit->Text = String(Zdot);
DeltaEdit->Text = String(Delta);
InclinOutEdit->Text = String(Inclination);
RightAsOutEdit->Text = String(RightAscension);
EccentricityOutEdit->Text = String(Eccentricity);
MeanMotionOutEdit->Text = String(MeanMotion);
ArgOfPerigeeOutEdit->Text = String(ArgumentOfPerigee);
MeanAnomalyOutEdit->Text = String(MeanAnomaly);
DeltaEdit->Text = String(Delta);

/***/

/* DISPLAY ALL ERRORS */
/***/
CreateDisplayText (ErrorList, Errors);
if (ErrorList.TotalErrors () !=0)
{
ErrorMemoBox->Lines->Clear();
ErrorMemoBox->Lines->Add ("THERE ARE ERRORS...");

94

for (i = 0; i<ErrorList.TotalErrors(); i++)
ErrorMemoBox->Lines->Add (Exrors[i]);

}

else

{ ErrorMemoBox->Lines->Cleax () ;
ErrorMemoBox->Lines->Add("No Errors...");

A.6 Error Handling

Each of the event-handlers in the code listed above can be seen to have an error
handling routine that lists out all errors that have been trapped by the program. It is
important that the structure of this error-handling be known for any programmers in the
future who may wish to adopt all or part of the coded modules of this project. »Ea‘ch
module within both the ABLPA Preprocessor and the ABLPA Main Processor have an
extra parameter in their parameter list that holds and traps any errors handled by the
program. This error parameter is always the last parameter on the visible parameter list
and can only be accessed by the manipulation routines held in the module
“ErrorStructure”. These routines and the nature of the error-handling system are

discussed in greater detail further in this paper.

95

Appendix B. ABLPA Preprocessor Software Implementation

The Airborne Laser Predictive Avoidance (ABL-PA) Preprocessor is only a part

of the software developed in this project. Figure B.1 illustrates how this preprocessor fits

into the overall hierarchy of the software.

AT
N

TLE Input File From
Space Command

given time.

A TLE File containing
the satellites that have
been determined will
intersect the laser in a

Situation Inputs
Time, Platform

Position, etc.

Intersect File

Preprocessor
Output

ABLPA
. . Preprocessor
(All Active Satellites)
A TLE File containing

only those satellites that
are in view of the
platform during a given
time period.

ABLPA
Main Processor

A TLE File containing
the satellites that are
close enough to
interpolate.

Close Approach

_/ File

Figure B.1 Where the ABLPA Preprocessor Fits in the Software

Hierarchy

It can be seen that the task of the preprocessor is to take the input file containing all

active satellites in orbit, and strip out only those satellites that are in view of the laser

platform at a given time. The preprocessor then creates an output file containing the

satellites in view. This output file has exactly the same format as the main TLE file,

except it has fewer satellites within it.

96

B.1 Preprocessor Modular Format

The preprocessor is a conglomeration of many software libraries that were created
and tested independently before being combined to form the preprocessor. Figure B.2
shows the basic libraries that comprise the preprocessor, and the modules each library

contains. Each library and module shown will be explained within this chapter.

ABLPAPreprocessorForm.cpp
(CBuilder Graphical Interface)

!

PAPreprocessor.cpp
(Main C++ Routine)
TimeModules.cpp EvaluateEphemerisModules.cpp TLEInput.cpp
ert
(;:a?;f dar [Evaluate Ephemeris l Rez;;IZLE
To Julian
Convert | Compare Orbit . Find ThetaG
Julian To

, \
SGP4 SupportModules.cpp s ErrorStructure. cpp

Call SGP4 | LaserConstants.h |

, S
SGP4Routines.cpp

(Not created by

Author) (Core Modules -
Called by All)

Figure B.2 ABLPA Preprocessor Calling Tree

From Figure B.2 it can be seen that modules could be roughly grouped into six libraries.
Each of these is listed in Table B.1. Each of these libraries of modules has been designed

to be a project in and of themselves, tested using their own GUI as seen in the table.

97

Table B.1 The Six Libraries Composing the ABLPA Preprocessor

Software
Library Title

Modules Tested
(C++)

GUI Interface
Module
(C++ Builder 3)

Purpose

ABLPA
Preprocessor

All preprocessor modules
as shown in Figure B.2

PAPreprocessorForm

To provide a user-
friendly way to run
the preprocessor

Test Error
Structure

ErrorStructure.cpp
CreateDisplayText
AddError
GrabError

TestErrorStructure
Text Only —
Non-(Graphical)

To test the error
handling routines
used to record and
store errors

SGP4 Support

CallSGP4
SGP4Routines
Core Modules

SGP4TestForm

To test the interface
with SGP4, as well
as the output
received from the
propagator

Time Module
Test

ConvertJulianToCalendar
ConvertCalendarToJulian
Core Modules

TimeTestForm

To test the time
conversion modules

TLE Input Test

ReadTLEFile
Core Modules

" TLETestForm

To test the module.

that reads the Two-.

Line Element Set
files used by the
software

Test Evaluate
Ephemeris

EvaluateEphemeris
CompareOrbit
FindThetaG
Core Modules

EvaluateEphemerisForm

To test the
evaluation of a
single satellite

The discussion of the preprocessor will progress through each of these libraries

individually, discussing the nature of the function served by the library, as well as

comments on each module within that library. The interfaces and input/output

parameters used with each module will be emphasized. The actual code for each module

in the ABLPA Preprocessor will be listed out in Appendix D. The code for each sub-

98

project GUI interface will be listed in Appendix E. Only the “Header File” or the files
with the “.h” extension will be listed here in the discussion, because they are short and
contain important interface information that should be discussed. All of the

implementation code will be included in their respective Appendices.

B.2 The Core Modules

The Core Modules are modules -that are used extensively throughout bot the
Preprocessor and the Main Processor. They consist of the modules, Aircraft.cpp,
Satellite.cpp, LaserConstants.h, and ErrorStructure.cpp. Except for ErrorStructure.cpp,
none of the Core Modules are tested exclusively, because their design is fairly simple,

and their function is easily recognized.

B.2.1 Aircraft.h

This module defines the “Aircraft” object. This object, or data-type, is used to
store all information needed about the aircraft platform parameters, including position,
speed, and etc. Its header file, which follows, describes the various manipulation
functions defined to work with the Aircraft object. If more clarification is required, the

implementation listing in Appendix D may help to clarify.

/**/

/* MODULE NAME: Aircraft.h */
/* AUTHOR: Captain David Vloedman */
/* DATE CREATED: Sept 19, 1998 */
/* - */
/* PURPOSE: This module of code houses the Aircraft class object. */
/* */
/* COMPILER: Borland C++ Builder3 Standard version */
/* This compiler should be used to compile and link. */
/* */

/**/

#ifndef AircraftH
#define AircraftH

#include "LaserConstants.h"

99

class Aircraft

public:

Aircraft();
~Aircraft();

/***************************************/

/* AIRCRAFT MANIPULATION FUNCTIONS */

/***************************************/

void
void
void
void
void
void
void
void
void
void
void

int
int

SetlLatitudeDegree(int 1d);
SetLatitudeMinute(int 14);
SetLatitudeSecond(double 1s);
SetLatitudeHemisphere (int h);
SetLongitudeDegree (int 1d);
SetLongitudeMinute(int 14);
SetLongitudeSecond (double 1ls)
SetVelocityX (double vel);
SetVelocityY(double vel);
SetVelocityZ (double vel);
SetAltitude(double alt);

GetLatitudeDegree() ;
GetLatitudeMinute() ;

double GetLatitudeSecond();

int
int
int

GetLatitudeHemisphere() ;
GetLongitudeDegree () ;
GetLongitudeMinute();

double GetLongitudeSecond();
double GetVelocityX();
double GetVelocityY();
double GetVelocityZ();
double GetAltitude();

private :
int LatitudeDegree;
int LatitudeMinute;
double LatitudeSecond;
int LatitudeHemisphere;
int LongitudeDegree;
int LongitudeMinute;
double LongitudeSecond;
int VelocityX;
int VelocityY;
int VelocityZz;

double Altitude;

}i

#endif

.
’

100

B.2.2 Satellite.h

This module defines the “Satellite” object. This object, or data-type, is used to
store all information needed about the satellite ephemeris paraméters. Its header file,
which follows, describes the various manipulation functions defined to work with the

Satellite object. If more clarification is required, the implementation listing in Appendix

D may help to clarify.

/**/
/* MODULE NAME: Satellite.h */
/* AUTHOR: Captain David Vloedman */
/* DATE CREATED: July 25, 1998 */
/* */
/* PURPOSE: This module of code houses the Satellite class object. */
/* */
/* COMPILER: Borland C++ Builder3 Standard version */
/* This compiler should be used to compile and link. */
/* */

/**/

#ifndef SatelliteH .
#define SatelliteH

#include "LaserConstants.h"

class Satellite {
public:
Satellite();
~Satellite();

/***/

/* SATELLITE MANIPULATION FUNCTIONS. MANY OF THESE */
/* FUNCTIONS ARE BASED ON THE FIELDS OF THE TWO-LINE */
/* ELEMENT SET INPUT FORMAT USED BY SPACE COMMAND. */
/***‘k***/

void SetName (char name [MAXINPUTLINELENGTH]) ;

void SetSSCNumber (long int ssc);

void SetRevAtEpoch(long int rev);

void SetSecurityClass (char secclass[CLASSLENGTH+1]);

void SetInternationalID(char intID[INTNUMLENGTH+1]);

void SetEpochYear (int eyear);

void SetEphemerisType(int etype);

void SetElementSetNumber (int esetnum);

void SetEpochDay(long double eday) ;

void SetRevSquared(long double rev2);

void SetRevCubed(long double rev3);

void SetBStarDrag(long double bstar);

void SetSemiMajorAxis(long double sma);

void SetEccentricity(long double e);

void SetRightAscension(long double ra);

void SetInclination(long double i);

void SetArgumentOfPerigee(long double ap);

void SetMeanAnomaly(long double ma);

101

void SetEccentricAnomaly(long double ea);

void SetTrueAnomaly(long double ta);

void SetScalarRadius(long double sr);

void SetMeanMotion(long double mm) ;

void Satellite::SetTLELinel (char line[MAXINPUTLINELENGTH])} ;
void Satellite::SetTLELine2 (char line[MAXINPUTLINELENGTH]) ;

char* GetName () ;
long int GetSSCNumber () ;
long int GetRevAtEpoch () ;

char* GetSecurityClass();
char* GetInternationallID();
int GetEpochYear () ;

int GetEphemerisType() ;
int GetElementSetNumber () ;

long double GetEpochDay();

long double GetRevSquared();

long double GetRevCubed() ;

long double GetBStarDrag();

long double GetSemiMajorAxis();
long double GetEccentricity();
long double GetRightAscension();
long double GetInclination();

long double GetArgumentOfPerigee();
long double GetMeanAnomaly();

long double GetEccentricAnomaly();
long double GetTrueAnomaly();

long double GetScalarRadius();
long double GetMeanMotion();

char* Satellite::GetTLELinel();
char* Satellite::GetTLELine2();

private
long double SemiMajorAxis;
long double Eccentricity;
long double RightAscension;
long double Inclination;
long double ArgumentOfPerigee;
long double MeanAnomaly;
long double EccentricAnomaly;
long double TrueAnomaly;
long double ScalarRadius;

char Name [MAXNAMELENGTH] ;

long int SSCNumber ;

long int RevAtEpoch;

char SecurityClass [CLASSLENGTH+1];
char InternationalID[INTNUMLENGTH+1];
int EpochYear;

int EphemerisType;

int ElementSetNumber;

long double EpochbDay;
long double RevSquared;
long double RevCubed;
long double BStarDrag;
long double MeanMotion;

char TLELinel [MAXINPUTLINELENGTH] ;
char TLELine2 [MAXINPUTLINELENGTH] ;
Y

/***/

/* THIS STRUCTURE HOLDS AN ARRAY OF SATS */
JRIKEK KKK KKk ok ok ok kkkkkkkkh kAR XA XAk ko kkk)

102

struct SatStructure {
Satellite Sat[MAXSATELLITES];
int NumSats;

}i

#endif

B.2.3 LaserConstants.h

LaserConstants.h is the header file where all of the physical constants for the

Preprocessor and the Main Processor are defined. The header file follows.

/**'k***************/

/* MODULE NAME: LaserConstants.h */
/* AUTHOR: Captain David Vloedman */
/* DATE CREATED: July 27, 1998 */
/* */
/* PURPOSE: This module houses some of the basic constants used in */
/* the deconfliction of a laser beam with the path of a */
/* satellite. */
/* */
/* COMPILER: Borland C++ Builder3 Standard version */
/* This compiler should be used to compile and link. */
/% */

/**/

#ifndef LaserConstantsH
#define LaserConstantsH

/**/
/************************* CONSTANT DEFINITIONS ***********************/
/**/

#define MAXNAMELENGTH 50 /* EACH NAME CAN BE ONLY 50 CHARS MAX */
#define GRAVITYCONSTANT 398601000 /* m/sec */
#define MAXMESSAGELENGTH 300 /* MAXTIMUM LENGTH OF AN ERROR MESSAGE */
#define MAXERRORS 50 /* MAX NUMBER OF ERROR MESSAGES */
#define MAXSATELLITES 1000 /* MAX SATELLITES THAT CAN BE READ */
#define NOERRORS 0 /* BOOLEAN ERROR FLAG */
#define ERRORFOUND 1 /* BOOLEAN ERROR FLAG */
#define MAXINPUTLINELENGTH 70 /* MAXIMUM CHARS OF LINE IN INPUT FILE*/
#define EARTHRADIUS 6378.135 /* EARTH RADIUS IN KILOMETERS */
#define MUEARTH 398601 /* GRAV CONSTANT IN km3/sec2 */
#define PI ' 3.14159265358979/* OBVIOUS */
#define TWOPI 6.283185307179586/* OBVIOUS */
#define DEGTORADIANS 0.01745329252 /* DEGREE TO RADIAN CONVERSION FACTOR */
#define RADTODEGREES 57.2957795131 /* RADIAN TO DEGREE CONVERSION FACTOR */
#define MINUTESPERDAY 1440 /* DAYS TO MINUTES CONVERSIONS FACTOR */
#define SECSSIDEREALDAY 86164.09054 /* # OF SECONDS IN A SIDEREAL DAY */
#define SECSPER24HOURS 86400 /* # OF SECONDS IN 24 HOURS */
#define SECSPERHOUR 3600 /* # OF SECONDS IN AN HOUR */
#define LATEREFERENCE 31536000 /* TIME IN SECONDS BY WHICH THETA G */

/* CAN BE SAFELY PROPAGATED. NOTE: */

/* 31536000 = 365%24*3600 (1 YEAR IN */

/* SECONDS) */
#define MMREVSPERDAY 8681660.4 /* THIS IS USED TO EXTRACT THE SEMI */

/* MAJOR AXIS FROM THE MEAN MOTION */

/* REVOLUTIONS PER DAY. IE: */

103

/* MM = 8681660.4 * a~(-3/2)

/***/

/* THE FOLLOWING CONSTANTS DEFINE BOTH THE STARTING POSITIONS */

/* OF EACH OF THE INPUT FIELDS IN THE TWO LINE ELEMENT */
/* (or TLE) INPUT FILE AND THE LENGTH OF THOSE FIELDS. THEY */
/* ARE EXPRESSED IN TERMS OF CHARACTER POSITION FROM THE */

/* BEGINNING OF THE LINE (POS),

AND LENGTH OF FIELD (LENGTH). */

/* THE LENGTH IS ALSO IN CHARACTERS OF THE FIELD (NOT DIGITS).*/

/***/

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#endif

CARDPOS
CARDLENGTH
SSCPOS
SSCLENGTH
CLASSPOS
CLASSLENGTH
INTNUMPOS
INTNUMLENGTH
EYEARPOS
EYEARLENGTH
EDAYPOS
EDAYLENGTH
REV2POS
REV2LENGTH
REV3POS
REV3LENGTH
REVPOWERPOS
REVPOWERLENGTH
BSTARPOS
BSTARLENGTH
BPOWERPOS
BPOWERLENGTH
ETYPEPOS
ETYPELENGTH
ELSETPOS
ELSETLENGTH
INCLINPOS
INCLINLENGTH
RIGHTASPOS
RIGHTASLENGTH
ECCPOS
ECCLENGTH
ARGPERPOS
ARGPERLENGTH
MEANANPOS
MEANANLENGTH
MEANMOPOS
MEANMOLENGTH
EPOCHREVPOS
EPOCHREVLENGTH

/* CARD NUMBER

/* SSC NUMBER

/* SECURITY CLASSIFICATION

/* INTERNATIONAL NUMBER

/* EPOCH YEAR

/* EPOCH DAY

/* REVOLUTIONS PER DAY SQUARED

/* REVOLUTIONS PER DAY CUBED

/* REVOLUTIONS PER DAY CUBED

/* BSTAR DRAG

/* BSTAR DRAG

/* EPHEMERIS TYPE

/* ELEMENT SET NUMBER

/* INCLINATION

/* RIGHT ASCENSION

/* ECCENTRICITY

/* ARGUMENT OF PERIGEE

/* MEAN ANOMALY

/* MEAN MOTION (Revolutions per day)

/* REVOLUTION NUMBER AT EPOCH

104

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

B.3 The Error Structure Project

This portion of the preprocessor deals with the handling, recording, and
displaying of errors within the software. The error handling modules are used throughout
both the Preprocessor and the Main Processor. The three modules that are used for error
handling are all held in ErrorStructure.cpp. These three modules are CreateDisplayText,
AddError, and GrabError. ErrorStructure.cpp also defines the ErrorStructure object,
that is used to store all errors recorded. The Test Error Project has only a text-driven user

interface that can be run in the DOS environment.

B.3.1 AddError

This module will add an error to the ErrorStructure, given information about the
error being recorded. It receives this information via three input parameters described
below.

Inputs

char moduleName [MAXNAMELENGTH] The Text name of the software
module in which the error occurred. MAXNAMELENGTH is defined in
LaserConstants.h.

char description[MAXMESSAGELENGTH] A text description of the
error. MAXMESSAGELENGTH is defined in LaserConstants.h.

int severity The severity of the error:
0 = Warning only
1 = Critical Error (An error terminal to the program)

AddError gives no tangible outputs, but loads the information into the ErrorStructure.

105

B.3.2 GrabError
GrabError grabs an error from the ErrorStructure. As inputs, GrabError requires
only the number of the error to be retrieved.

Inputs

int number This is the only input GrabError requires. It is the number
(between 1 and MAXERRORS) of the error to be fetched.

QOutputs

char moduleName [MAXNAMELENGTH] The module where the error being
fetched occurred.

char description[MAXMESSAGELENGTH] The description of the error
being fetched.

int &severity The severity of the error:
0 = Warning only
1 = Critical Error (An error terminal to the program)
int &found A boolean flag telling whether the error asked for was found:

0 = Not found
1 = Found

B.3.3 CreateDisplayText

There was a need to convert the errors from the ErrorStructure format to straight
text, so that the errors could be accessed by outside interfaces that only recognize C-
Strings. This module converts the list of errors in the ErrorStructure to an ordinary array
of type char.

Inputs

ErrorStructure &errors This would be the variable of type
ErrorStructure that holds the errors to be converted.

106

Qutputs
char text [MAXERRORS] [MAXMESSAGELENGTH] This is a two-
dimensional array or characters that holds a one-line combined description of
each error in the ErrorStructure.

The header file describing AddError, GrabError, and CreateDisplayText, and the rest of

the ErrorStructure library, follows. Notice the modules CriticalError and WarningError

are used to assess whether any errors of those respective types have occurred.

B.3.4 The ErrorStructure.h Header File

/**/

/* MODULE NAME: ErrorStructure.h */
/* AUTHOR: Captain David Vloedman */
/* DATE CREATED: July 25, 1998 *x/
/* */
/* PURPOSE: This module of code houses the error structure which */
/* will be used to hold and trap any error conditions that */
/* arise during the operation of the program. */
/* */
/* COMPILER: Borland C++ Builder3 Standard version */
/* This compiler should be used to compile and link. */
/* */

/****************************‘k***/

#ifndef ErrorStructureH
#define ErrorStructureH

#include "LaserConstants.h"

class ErrorStructure {

public:
ErrorStructure() ; /* CONSTRUCTOR */
~ErrorStructure() ; /* DESTRUCTOR */

/**/
/* ErrorStructure MANTIPULATION FUNCTIONS */
/***********~k**/
/**/

/* FUNCTION NAME: AddError */
/* AUTHOR: Captain David Vloedman */
/* DATE CREATED: July 25, 1998 */
/* */
/* PURPOSE: This function is used to record an error into the error */
/* structure. */

/**/

void AddError (char moduleName [MAXNAMELENGTH] ,
char description[MAXMESSAGELENGTH],
int severity);

107

/**/

/*
/*
/*
/*
/*
/*

FUNCTION NAME:
AUTHOR:
DATE CREATED:

PURPOSE:

GrabError */
Captain David Vloedman */
July 25, 1998 */

*x/
This function is used to retrieve an error that has been*/
previously added to the error structure. */

/**/

void GrabError (int number,

char moduleName [MAXNAMELENGTH],
char description{MAXMESSAGELENGTH],
int &severity,

int &found) ;

/**,

/*
/*
/*
/*
/*
/*
/*
/*
/*

FUNCTION NAME:
AUTHOR:
DATE CREATED:

PURPOSE:

CriticalError */
Captain David Vloedman * /
July 25, 1998 */

*/
This function is used to determine if a critical (fatal)*/
error has been detected and recorded yet. */
CriticalErrorFound = 1 --> TRUE */
CriticalErrorFound = 0 --> FALSE */

*/

/**/

int CriticalError();

/**/

/*
/*
/*
/*
/*
/*
/*
/*

*

FUNCTION NAME:
AUTHOR:
DATE CREATED:

PURPOSE:

WarningError *x/
Captain David Vloedman */
July 25, 1998 */

*/
This function is used to determine if a warning (non- */
fatal) error has been detected and recorded yet. */
WarningFound = 1 --> TRUE */
WarningFound = 0 --> FALSE x/

*/

/*******************‘***/

int WarningError();

/**/

/*
/*
/*
/*
/*
/*
/*
/*

FUNCTION NAME:
AUTHOR:
DATE CREATED:

PURPOSE:

TotalErrors */
Captain David Vloedman */
July 25, 1998 */

*/
This function is used to determine how many errors total*/
have occurred and been recorded. */
ErrorsFound = Total number of errors. */

*/

/**/

int TotalErrors();

/**/

/‘k
/*
/*
/*

These private structures cannot be seen */
outside this module. They are used to */
errors and are interfaced with by the */
public functions. */

108

/**/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

private

int CriticalErrorFound;

int WarningFound;

int ErrorsFound;

char ModuleList [MAXERRORS] [MAXNAMELENGTH] ;
char ErrorList[MAXERRORS] [MAXMESSAGELENGTH] ;
int Severity[MAXERRORS];

********************************-k**-k***************************************/

FUNCTION NAME:
AUTHOR:
DATE CREATED:

PURPOSE:

INPUTS:

OUTPUTS:

CreateDisplayText */
Captain David Vloedman */
July 25, 1998 */
*/

This function is used to create a simple array of */
character arrays which hold all of the information */
held in the error-structure. This two-dimensional */
text array may have messages as long as MAXMESSAGELENGTH®*/
and can hold MAXERRORS messages. */
*/

NAME : PURPOSE: */
errors DataStructure holding all errors */
*/

NAME : PURPOSE: */
text A completely textual version of */
errors. */

/**/

void CreateDisplayText (ErrorStructure &errors,

#endif

char text[MAXERRORS] [MAXMESSAGELENGTH]) ;

109

B.4 The SGP4 Support Library

The SGP4 Support Library consists of all of the modules used to store and
interface with the SGP4 satellite ephemeris propagator. Although SGP4 was written
independently of this project by Air Force Space Command, a copy of it (version 3.01C)
is stored in the module SGP4Routines.cpp. These external routines are accessed using
the module “CallSGP4”, stored in the SGP4SupportM6dules library. CallSGP4, and
consequently SGP4 itself, can be tested using the Graphical User Interface illustrated in
Figure B.3. The GUI below is controlled by the Cbuilder module SGP4TestForm, which

was developed to facilitate testing of the nature and behavior of the interface to SGP4.

Figure B.3. Testing GUI Used to Access CallSGP4

110

B.4.1 CallISGP4
As mentioned previously, CallSGP4 is the module used to call and interface with

SGP4. The input and output interface used by SGP4 is proprietary to the Air Force, and

will not be discussed here, however the interface to CallSGP4 can be explained.

Inputs

struct Satellite &Sat This first input is just the Satellite object
that holds all of the ephemeris information gleaned from a Two-Line
Element Set file, and populated using the ReadTLEFile module.

double JulianbDate This is the modified Julian Date (The Julian Date —
2440000) that needs to be propagated to. This is the actual time at which the user
wishes to find the position of the satellite.

Outputs

double &X The X coordinate of the satellite at the Julian Date specified,
given in terms of the ECI frame, in kilometers.

double &Y The Y coordinate of the satellite at the Julian Date specified,
given in terms of the ECI frame, in kilometers.

double &z The X coordinate of the satellite at the Julian Date specified,
given in terms of the ECI frame, in kilometers.

double &Xdot The velocity in the X direction (ECI frame) of the satellite at
the Julian Date specified, in kilometers per second.

double &Ydot The velocity in the Y direction (ECI frame) of the satellite at
the Julian Date specified, in kilometers per second.

double &Zdot The velocity in the Z direction (ECI frame) of the satellite at
the Julian Date specified, in kilometers per second.

double &Inclination The inclination of the satellite at the Julian Date
specified, in degrees.

double &RightAscension The Right Ascension of the satellite at the
Julian Date specified, in degrees.

111

double &Eccentricity The Eccentricity of the satellite at the Julian Date
specified, in degrees.

double &MeanMotion The Mean Motion of the satellite at the Julian Date

specified.

double &ArgumentOfPerigee The Argument of Perigee of the satellite
at the Julian Date specified, in degrees.

double &MeanAnomaly The Mean Anomaly of the satellite at the Julian
Date specified, in degrees.

double &Delta This is the time that has elapsed between the time that the
original ephemeris data for the satellite (held in the Satellite object) and the Julian
propagation date specified. In other words, the amount of time (in minutes) that
has been propagated.

ErrorStructure &ErrorList The error handling object.

B.4.2 The SGP4SupportModules.h Header File

/**/

/* MODULE NAME: SGP4SupportModules.h */
/* AUTHOR: Captain David Vloedman ' */
/* DATE CREATED: October 20, 1998 */
/* */
/* PURPOSE: This set of modules supports incorporating "SGP4", a */
/* Satellite position/time propagator developed by */
/* United States Space Command. These modules were */
/* developed for SGP4 Version 3.01C. They simply serve as */
/* an interface between this project and SGP4. */
/* */
/* COMPILER: Borland C++ Builder3 Standard version */
/* This compiler should be used to compile and link. */
/* */

/**/

#ifndef SGPASupportModulesH
#define SGP4SupportModulesH

#include "ErrorStructure.h"
/**/

/*********************** FUCTIONS *****************************/
/**/

/*************************************'k************‘k*************************/

/* TFUNCTION NAME: CallSGP4 */
/* AUTHOR: Captain David Vlcedman */
/* DATE CREATED: October 20, 1998 */
/* */
/* PURPOSE: This procedure will take elements already existing */

112

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

INPUTS:

OUTPUTS:

COMPILER:

within the Predictive Avoidance Project code and adapt */

that information slightly to be used by SGP4 version */
3.01. It will then make a call to SGP4 and return the */
results. */
*/

NAME : DEFINITION: *f
Sat Holds all ephemeris information */
for the Satellite being studied */

JulianDate The time to which the position */
of sat should be propagated to */

NAME : DESCRIPTION: */
X X axis pos in ECI frame at Jul */
date */

Y Y axis pos in ECI frame at Jul */
date */

4 Z axis pos in ECI frame at Jul */
date */

Xdot Velocity vector in X direction */
Ydot Velocity vector in Y direction */
zdot Velocity vector in Z direction */
Inclination Inclination at Julian Date */
RightAscension Right Ascension at Julian Date */
Eccentricity Eccentricity at Julian Date */
ArgumentOfPerigee Arg of Perigee at Julian Date */
Mean Anomaly The Mean Anomanly at Julian Date*/
Delta The amount of time in seconds */
that has transpired between the */

actual ephemeris measurements */

and the Julian Date propagated */

ErrorList The Errors which have occurred */
*/

*/

Borland C++ Builder3 Standard version */
This compiler should be used to compile and link. */
*/

/**/

CallSGP4 (struct Satellite &Sat,

double JulianDate,

double &X,

double &Y,

double &Z,

double &Xdot,

double &Ydot,

double &Zdot,

double &Inclination,
double &RightAscension,
double &Eccentricity,
double &MeanMotion,

double &ArgumentOfPerigee,
double &MeanAnomaly,
double &Delta,
ExrrorStructure &ErrorList);

113

B.5 The Time Module Library

The Time quule Test project consists of two modules that convert back and
forth between the Calendar Date and the Modified Julian Date. These two modules are
ConvertCalendarToJulian and ConvertJulianToCalendar. They are both stored in
the TimeModule.cpp library. Both of these modules can be tested independently with

any calling routine. The graphical interface shown in Figure B.4 has been developed for

this purpose.

Figure B.4. Graphical Interface Developed for Testing the Time Modules

The code for this GUI is contained within the C++ Builder module TimeTestForm, and is

included in Appendix E.

114

B.5.1 ConvertCalenderToJulian
The module, ConvertCalendarToJulian will take a date in the modern
calendar, down to a fraction of a second, and convert it to its equivalent Modified Julian
Date. The Modified Julian Date is simply the Julian Date — 2440000 days.

Inputs

int Cyear The Calender Year (all four digits) of the date to be converted to
the Modified Julian Date.

int Cmonth The Calender Month (1 to 12) of the date to be converted to the
Modified Julian Date.

~int cday The Calender Day (1 to 366) of the date to be converted to the
Modified Julian Date.

int Chour The Calender Hour (0 to 24) of the date to be converted to the
Modified Julian Date.

int Cminute The Calender Minute (0 to 60) of the date to be converted to the
Modified Julian Date. '

double Csecond The Calender Second (0 — 59.99999999) of the date to be
converted to the Modified Julian Date.

Outputs

double &JulianDate The Modified Julian Date converted from the
Calender Date above.

ErrorStructure &ErrorList The error-handling structure.

B.5.2 ConvertJulianToCalendar

The ConvertJulianToCalender module does just the reverse of its sister module.

It will take a Modified Julian Date and convert it to its equivalent calender date.

115

Inputs

double JulianDate The Modified Julian to be converted to an equivalent
Calender Date.

QOutputs

int &Cyear The Calender Year (all four digits) of the date converted from
the Modified Julian Date. '

int &Cmonth The Calender Month (1 to 12) of the date converted from the
Modified Julian Date.

int &Cday The Calender Day (1 to 366) of the date converted from the
Modified Julian Date.

int &Chour The Calender Hour (0 to 24) of the date converted from the
Modified Julian Date.

int &Cminute The Calender Minute (0 to 60) of the date converted from the
Modified Julian Date.

double &Csecond The Calender Second (0 — 59.99999999) of the date
converted from the Modified Julian Date.

ErrorStructure &ErrorList The error-handling structure.

B.5.3 The TimeModule.h Header File

/**'k*********/

/* MODULE NAME: TimeModules.h *x/
/* AUTHOR: Captain David Vloedman */
/* DATE CREATED: September 10, 1998 */
/* */
/* PURPOSE: This module of code houses the Time routines which are */
/* used to retrieve and manipulate the times used as */
/* reference times for satellite passing. The numerical */
/* algorithms were provided by Professor William Wiesel, */
/* ’ Air Force Institute of Technology, who earlier gleaned */
/* the algorithms from the text, "Numerical Recipes". It */
/* was converted from Fortran to C++ by the author. */
/* */
/* COMPILER: Borland C++ Buillder3 Standard version */
/* This compiler should be used to compile and link. */
/* */

/**/

#ifndef TimeModulesH

#define TimeModulesH
/*********************************/

116

/* USER-BUILT LIBRARIES */

/*********************‘k***********/

#include

"ErrorStructure.h"

/**/

/*********************** FUCTIONS

*****************************/

/**/

/**/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/'k

FUNCTION NAME:
AUTHOR::

DATE CREATED:
PURPOSE:

INPUTS:

OUTPUTS:

COMPILER:

ConvertCalenderToJulian
Captain David Vloedman

September 10, 1998

This function will read in the calender date and return
the equivalent modified Julian date.

NAME : DEFINITION:

CYear Holds the calender year

Cmonth Holds the Calender month(l - 12)
CDhay Holds calender day

CHour Holds the calender hour

CMinute Holds the calender minute
CSecond Holds the calender second
ErrorList Holds the Errors found

NAME : DEFINITION:

JulianDate Holds the Julian equivalent to

the calender date.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Cx

Borland C++ Builder3 Standard version
This compiler should be used to compile and link.

*/
*/
*/

/**/

void ConvertCalenderToJulian (int CYear,

int CMonth,

int CbDhay,

int CHour,

int CMinute,

double Csecond,
double &JulianDate,

ErrorStructure &ErrorList);

/**‘k*********************/

/*
/*
/*
/*
/-k
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

FUNCTION NAME:
AUTHOR:
DATE CREATED:

PURPOSE:

INPUTS:

OUTPUTS:

ConvertJulianToCalender
Captain David Vloedman
September 10, 1998

This function will read in the Julian date and return

the equivalent calender date.

NAME : DEFINITION:

JulianDate Holds the Julian equivalent to
the calender date.

NAME : DEFINITION:

CYear Holds the calender year

Cmonth Holds the Calender month(l - 12)

CDhay Holds calender day

CHour Holds the calender hour

CMinute Holds the calender minute

CSecond Holds the calender second

ErrorList Holds

117

the Errors found

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/*

/* COMPILER: Borland C++ Builder3 Standard version

/* This compiler should be used to compile and link.
/*

*/
*/
*/
*/

/**/

void ConvertJulianToCalender (int
int
int
int
int

&CYear,
&CMonth,
&CDhay,
&CHour,
&CMinute,

double &CSecond,
double JulianDate,

ErrorStructure &ErrorList);

#endif

118

B.6 The TLE Input Library

The TLE Input Library consists of the interface module used to read all of the
input that comes to the software package in the form of Two-Line Element (TLE) set
files. The TLE data format is used widely to hold satellite ephemeris in a data file. It is
by the popular software package, Satellite Tool Kit, developed by Analytical Graphics to
hold satellite information, as well as by Air Force Space Command and a host of other
users. This is the most likely format of the satellite ephemeris data that must inevitably
be downloaded to the Preprocessor (and Main processor) for analysis. The Module,
ReadTLEFile, is the module responsjble for reading this type of formatted input file and

loading the information into an object of type SatStructure which is defined in the

Figure B.5. Graphical Interface Developed for Testing ReadTLEFile

119

Satellite.h module. ReadTLEFile is housed in the TLEInput.cpp library. ReadTLEFile
can be called from any C++ program, and it can be tested using the Graphical

C++Builder module, TLETestForm, which generates the GUI illustrated in Figure B.5.

B.6.1 ReadTLEFile

The ReadTLEFile module is the module that reads a TLE file and populates
SatStructure with the satellite data contained inside of it. ’l:he format of a sample TLE
file is shown in Appendix F.

Inputs

char FileName [MAXNAMELENGTH] The only input the ReadTLEFile is
the name of the TLE file to be read. '

QOutputs

struct SatStructure &SatArray SatArray is an object of type
SatStructure, which is essentially an array of Satellite objects. It is defined in the
Satellite.h file.

ErrorStructure &ErrorList The error-handling structure.

B.6.2 The TLE Input.h Header File

/**/

/* MODULE NAME: TLEInput.h */
/* AUTHOR: Captain David Vloedman */
/* DATE CREATED: August 18, 1998 */
/* */
/* PURPOSE: This module of code houses the routines which input the */
/* Two Line Element (TLE) sets from an input file. */
/% */
/* COMPILER: Borland C++ Builder3 Standard version */
/* This compiler should be used to compile and link. */
/% . */

/**/

#ifndef TLEInputH

#define TLEInputH

#include "LaserConstants.h"
#include "Satellite.h"

#include "ErrorStructure.h"
/**/

/*********************** FUCTIONS *****************************/

120

/**/

/**/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

FUNCTION NAME:
AUTHOR:
DATE CREATED:

PURPOSE:

INPUTS:

OUTPUTS:

COMPILER:

ReadTLEFile */
Captain David Vloedman */
August 18, 1998 */

*/
This function will read in the information contained in */
an input file holding Two Line Element (TLE) sets. */
These TLEs hold the ephemeris data for all of the */
satellites we will be covering. It uses the TLE */
information to populate a satellite data structure which*/
is used throughout the program. */

*/
NAME : DEFINITION: */
FileName) Holds the name of the Input File*/

*/
NAME : DEFINITION: */
SatArray Returns satellite information */
ErrorList Returns error information */

*/
Borland C++ Builder3 Standard version */
This compiler should be used to compile and link. */

*/

/**/
void ReadTLEFile (char FileName [MAXNAMELENGTH],

struct SatStructure &SatArray,

ErrorStructure &ErrorList);

#endif

121

B.7 The Evaluate Ephemeris Library

The purpose of the Evaluate Ephemeris portion of the preprocessor is to tie
together all of the other modules and analyze the data for just one satellite. This library
is, therefore, the heart of the preprocessor. It can be used to more intensely scrutinize a
single satellite engagement for error checking or other purposes. The library contains
three modules, EvaluateEphemeris, CompareOrbit, and FindThetaG. Each module
can be run independently as a stand alone application, and all are run repeatedly by each
execution of the preprocessor. A Graphical Interface has been created using C++Builder
3 to execute these three modules using a single satellite’s ephemeris input. This interface
is shown in Figure B.6, and is controlled by the module, EvaluateEphemerisForm. The

implementation for this module is contained in Appendix E.

Figure B.6. Graphical Interface Used to Test EvaluateEphemeris

122

B.7.1 EvaluateEphemeris

EvalaluateEphemeris is the module that calls all of the modules so far discussed,
including CompareOrbit and FindThetaG. It is the pinnacle module responsible for tying
together all of the data and algorithms together for a single satellite analysis. It is called
multiple times by the preprocessor to analyze each satellite in the input file in succession.
This module is responsible for determining whether or not a satellite is or will be in the

field of view of the platform during a given time increment.

Inputs

struct Satellite &Sat This first input is just the Satellite object
that holds all of the ephemeris information gleaned from a Two-Line
Element Set file, and populated using the ReadTLEFile module.

struct Aircraft &ABLPlatform ABLPlatform is a structure of type
“Aircraft” that holds all of the information about the position of the aircraft at the
time of execution of '

the Preprocessor.

double ThetaGInRad This is the angle at which the Earth’s Greenwich
Meridian is currently at with respect to the ECI frame, where the referent angle is
the Vernal Equinox. This angle should be in radians.

double TimeToNextRun The estimated time until the next run of the
Preprocessor.

double JulianbDate This is the modified Julian Date (The Julian Date —
2440000) that needs to be propagated to. This is the actual time at Wthh the user
wishes to find the position of the satellite.

Outputs

int &SatelliteInView This is a boolean variable that tells whether
or not the satellite being evaluated is currently (as of the Julian Date given) in
view of the platform given:

1 = satellite in view

0 = satellite not in view

123

int &OrbitInvView It may be that the satellite is not in view, but its
ephemeris, or the path the satellite follows, is currently in view. This is regardless
of whether the satellite itself is in view. Naturally, if the satellite is in view, the
orbit must also be in view.

1 = orbit in view

0 = orbit not in view

double &SatX The X coordinate of the satellite at the Julian Date
specified, given in terms of the ECI frame, in kilometers.

double &Saty The Y coordinate of the satellite at the Julian Date
specified, given in terms of the ECI frame, in kilometers.

double &SatZz The X coordinate of the satellite at the Julian Date
specified, given in terms of the ECI frame, in kilometers.

double &SatXdot The velocity in the X direction (ECI frame) of the
satellite at the Julian Date specified, in kilometers per second.

double &SatYdot The velocity in the Y direction (ECI frame) of the
satellite at the Julian Date specified, in kilometers per second.

double &Satzdot The velocity in the Z direction (ECI frame) of the
satellite at the Julian Date specified, in kilometers per second.

double &Delta This is the time that has elapsed between the time that the
original ephemeris data for the satellite (held in the Satellite object) and the Julian
propagation date specified. In other words, the amount of time (in minutes) that
has been propagated.

double &Inclination The inclination of the satellite at the Julian Date
specified, in degrees.

double &RightAscension The Right Ascension of the satellite at the
Julian Date specified, in degrees.

double &Eccentricity The Eccentricity of the satellite at the Julian Date
specified, in degrees.

double &MeanMotion The Mean Motion of the satellite at the Julian Date
specified.

double &ArgumentOfPerigee The Argument of Perigee of the satellite
at the Julian Date specified, in degrees.

124

double &MeanAnomaly The Mean Anomaly of the satellite at the Julian
Date specified, in degrees.

double &Dvector The Dvector is the vector used to evaluate the time to
rise. Its presence here is used mostly for testing purposes and can be largely
ignored. For a more complete explanation, see Chapter 2, pages 18-31.

double &TimeToRise If the orbit of the satellite is in view, but the satellite
is not in view, this parameter gives the time estimate of when the satellite is
expected to come into view.

double &CriticalRadius The Critical Radius describes the smallest
radius at the satellites position that can appear above the artificial horizon of the
platform. This parameter is also used mostly for testing, and can be disregarded
when called by other applications. For a more complete explanation, see Chapter
2, pages 18-31.

double &SatRadius The Sat Radius describes the radius of the satellite as
measured from the center of the Earth. This parameter is also used mostly for
testing, and can be disregarded when called by other applications. For a more
complete explanation, see Chapter 2, pages 18-31.

ErrorStructure &ErrorList The error handling object.

B.7.2 CompareOrbit

Compare Orbit is the module used by EvaluateEphemeris to see if the orbit of the

satellite is in view of the platform.

Inputs

struct Satellite &Sat This first input is just the Satellite object
that holds all of the ephemeris information gleaned from a Two-Line
Element Set file, and populated using the ReadTLEFile module.

struct Aircraft &ABLPlatform ABLPlatform is a structure of type
“Aircraft” that holds all of the information about the position of the aircraft at the
time of execution of

the Preprocessor.

double ThetaGInRad This is the angle at which the Earth’s Greenwich
Meridian is currently at with respect to the ECI frame, where the referent angle is
the Vernal Equinox. This angle should be in radians.

125

Outputs

double &TimeToRise If the orbit of the satellite is in view, but the satellite
is not in view, this parameter gives the time estimate of when the satellite is
expected to come into view.

double &CriticalRadius The Critical Radius describes the smallest
radius at the satellites position that can appear above the artificial horizon of the
platform. This parameter is also used mostly for testing, and can be disregarded

when called by other applications. For a more complete explanation, see Chapter
2, pages 18-31.

double &SatRadius The Sat Radius describes the radius of the satellite as
measured from the center of the Earth. This parameter is also used mostly for
testing, and can be disregarded when called by other applications. For a more
complete explanation, see Chapter 2, pages 18-31.

ErrorStructure &ErrorList The error handling object.

B.7.3 FindThetaG

The module, FindThetaG, is used to prdpagate the Earth’é rotation in the ECI
coordinate frame over time. It requires a reference position for the Greenwich Meridian,
at a given reference time, and the Modified Julian Date of the time that is to be
propagated to. It is important to remember, that, when using this module, the reference
time and the propagation date should not be more than a year apart. If they are more than
a year apart, the user takes the chance that accuracy will fade, making the angle less

precise.

126

Inputs

int ReferenceHour Reference hour Refers to the Reference angle of

0; (The angle between the Greenwich meridian and the Vernal Equinox). This
angles is given in hours, minutes and seconds as opposed to degrees or radians.
This parameter holds the hours portion of 6

int ReferenceMinute The minutes portion of 6
double ReferenceSecond The seconds portion of 6

double RefModJulianDate This parameter holds the Modified Julian

Date at which the reference angle, 0,5, was taken. This allows 0, to be propagated
forward to the present moment.

int CalcYear The current year.

int CalcMonth The current month (1-12).
int CalcDay The current day (1-31).

int CalcHour The current hour (1-24).

int CalcMinute The current minute (1-60).

double CalcSecond The current second. This is the only part of the
current time that can be given as a non-integer. This field should be accurate to
at least three decimal places.

Outputs

double &ThetaGInRadians This is the instantaneous angle between the
Greenwich meridian and the Vernal Eginox at the moment of execution of the
preprocessor.

ErrorStructure &ErrorList) This parameter is both an input and
output parameter. Each module uses it to assess whether a fatal error has
occurred somewhere else in the program, and uses it to record errors which may
be important to the user.

127

B.7.4 The EvaluateEphemerisModules.h Header File

/**/

/* MODULE NAME: EvaluateEphemerisModules.h */
/* AUTHOR: Captain David Vlocedman */
/* DATE CREATED: August 18, 1998 */
/* */
/* PURPOSE: This set of modules supports the preprocessor and are */
/* used to evaluate whether or not the satellite is ever */
/* above the platform horizon. */
/* */
/* COMPILER: Borland C++ Builder3 Standard version */
/* This compiler should be used to compile and link. */
/* */

/**/

#ifndef EvaluateEphemerisModulesH
#define EvaluateEphemerisModulesH

#include "ErrorStructure.h"
#include "Aircraft.h"
#include "Satellite.h"

/**/
/*********************** FUCTIONS *****************************/
/****************************‘k*****1\'***/

/**/

/* FUNCTION NAME: EvaluateEphemeris */
/* AUTHOR: Captain David Vloedman */
/* DATE CREATED: Sept 19, 1998 */
/* */
/* PURPOSE: This function will take the position of the aircraft and*/
/* the orbital elements of the satellite and calculate */
/* whether or not the satellite ever comes into view (or */
/* above the horizontal horizon) of the the aircraft. */
/-k . */
/* INPUTS: NAME : DEFINITION: */
/* Sat Holds all ephemeris information */
/*) for the Satellite being studied */
/* ABLPlatform Holds all information about ABL */
/* Platform position/disposition */
/* JulianDate The time to which the position */
/* of sat should be propagated to */
/* TimeToNextRun The amount of time for which the*/
/* current run must last. This is */
/* To determine how much time in */
/* seconds will transpire before */
/* next update is received. */
/* ThetaGInRadians The angle between the Greenwich */
/* Meridian and the Vernal Equinox */
/* at JulianDate. */
/* OUTPUTS: NAME: DESCRIPTION: */
/* SatelliteInView If the Satellite is visible to */
/* the ABLPlatform (over the */
/* artificial horizon of the */
/* aircraft. 1 = "yes", 0 = "no" */
/* OrbitInView Is the satellite ever above the */
/* horizon plain of the platform? */
/* (IE, is the orbit itself, regard*/
/* less of the satellite present */
128

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/* COMPILER:
/*
/*

position, it view? YES=1, NO=0. */

SatX X axis pos in ECI frame at Jul */
date */

Saty Y axis pos in ECI frame at Jul */
date */

SatZz Z axis pos in ECI frame at Jul */
date */

SatXdot Velocity vector in X direction */
SatYdot Velocity vector in Y direction */
SatZdot Velocity vector in Z direction */
Inclination Inclination at Julian Date */
RightAscension Right Ascension at Julian Date */
Eccentricity Eccentricity at Julian Date */
ArgumentOfPerigee Arg of Perigee at Julian Date */
Mean Anomaly The Mean Anomanly at Julian Date*/
Delta The amount of time in seconds */
that has transpired between the */

actual ephemeris measurements *x/

. and the Julian Date propagated */
Dvector This is the magnitude of the */
satellite radius vector (the */

vector from earth center to the */

satellite) in the direction of */

the Platform radius vector. IE */

the component of the sat radius */

vector in. the Platform radius */

direction. This is used to show*/

how close the sat is to rising */

above the artificial horizon. */

TimeToRise Estimated time before the sat */
rises above the platform's */

artificial horizon. */

CriticalRadius The Radial component which tells*/
the minimum distance an object */

must be before it lies above the*/

artificial horizon of the * /

platform. */

SatRadius The Radial altitude of the sat */
wrt the platform altitude. This*/

is compared to the critical rad */

to determine if the sat lies */

above or below the platform */

artificial horizon. */

ErrorList The Errors which have occurred */
*/

Borland C++ Builder3 Standard version */
This compiler should be used to compile and link. */
*/

/**/

void EvaluateEphemeris(struct

struct
double
double
double
int

int

double
double
double
double
double
double

Satellite &Sat,

Aircraft &Platform,

ThetaGInRad,
JulianDate,
TimeToNextRun,
&SatelliteInView,
&OrbitInView,
&SatX,

&Saty,

&Satz,
&SatXdot,
&SatYdot,
&SatZdot,

129

double &Delta,
double &Inclination,

double &RightAscension,
double &Eccentricity,

double &MeanMotion,

double &ArgumentOfPerigee,

double &MeanAnomaly,
double &Dvector,
double &TimeToRise,

double &CriticalRadius,

double &SatRadius,

ErrorStructure &ErrorList) ;

/**/

a reference position and time

for a known angle between the Greenwich Meridian and

propagate the angle through

natural orbit precession at the given calculation time.

time must always be BEFORE the

DEFINITION:

This holds the value of Theta G
at RefModJulianDate. The angle
of Theta G is given in hours,
minutes, and seconds instead of
degrees, where 24 hrs = 360 deg
Holds the minutes of Theta G at
RefModJulianDate.

Holds the seconds of Theta G at
RefModJulianDate.

This is the reference date when
an actual observation of the
true value of theta G was made.
Holds the current calender year
Holds the Calender month(l - 12)
Holds calender day

Holds the calender hour

Holds the calender minute

Holds the calender second

DESCRIPTION:

The angle between the Greenwich
Meridian and the Vernal Equinox
at Calc Date.

The Errors which have occurred

used to compile and link.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/*********************1\'**/

/* FUNCTION NAME: FindThetaG
/* AUTHOR: Captain David Vlocedman
/* DATE CREATED: October 6, 1998
/*
/* PURPOSE: This function will take
/*
/* the Vernal Equinox, and
/*
/* Note that the reference
/* calulation time.
/*
/* INPUTS: NAME :
/* ReferenceHour
/*
/*
/*
/*
/* ReferenceMinute
/*
/* ReferenceSecond
/*
/* RefModJulianDate
/*
/*
/* CalcYear
/* Calcmonth
/* CalcDhay
/* CalcHour
/* CalcMinute
/* CalcSecond
/*
/* OUTPUTS: NAME :
/* ThetaGInRadians
/*
/*
/* ErrorList
/*
/* COMPILER: Borland C++ Builder3 Standard version
/* This compiler should be
/*
void FindThetaG(int ReferenceHour,
int ReferenceMinute,

double ReferenceSecond,
double RefModJulianbDate,
int CalcYear,
int CalcMonth,

130

int
int
int

CalcDay,
CalcHour,
CalcMinute,

double CalcSecond,
double &ThetaGInRadians,
ErrorStructure &ErrorList) ;

/**/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/'k
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

FUNCTION NAME: CompareOrbit */
AUTHOR: Captain David Vloedman */
DATE CREATED: October 6, 1998 */
*/

PURPOSE: This function will take the position of the aircraft and*/
the orbital elements of the satellite and calculate */

whether or not the satellite ever comes into view (or */

above the horizontal horizon) of the the aircraft. Notex/

that this is at an instantaneous time. It does not */

account for the precession of the orbit, and so must */

be run at regular close (30 minute) intervals to be */

reliable and accurate. */

*/

INPUTS: NAME : DEFINITION: */
Platform.LatitudeDegree Degree of Latitude (0-90 int) */
Platform.LatitudeMinute Minute of Latitude (0-60 int) */
Platform.LatitudeSecond Second of Latitude (0-60 float) */
Platform.LongitudeDegree . Degree of Longitude (0-360 int) */
Platform.LongitudeMinute Minute of Longitude (0-60 int) */
Platform.LongitudeSecond Second of Longitude (0-60 float)*/
Sat.RightAscension Right Ascension (degrees) */
Sat.Eccentricity Eccentricity (float) */
Sat.Inclination Inclination (degrees) */
Sat.MeanMotion Mean Motion (float) */
Sat.ArgumentOfPerigee Degrees (0-360) */
Sat.MeanAnomaly Degrees (0-360) *x/
Sat.EpochDay Day of year msrmts taken (float)*/
Sat.EpochYear Calender Year (int) */
ThetaGInRad Angle between Greenwich and */

Vernal Equinox */

ErrorList Errors that have occured */

*/

OUTPUTS: NAME : DESCRIPTION: . */
CriticalRadius The Radial component which tells*/

the minimum distance an object */

must be before it lies above the*/

artificial horizon of the */

platform. *x/

SatRadius The Radial altitude of the sat */

wrt the platform altitude. Thigs*/

is compared to the critical rad */

to determine if the sat lies */

above or below the platform */

artificial horizon. */

OrbitInView Is the satellite ever above the */
horizon plain of the platform? */

(IE, is the orbit itself, regard*/

less of the satellite present */

position, it view? YES=1, NO=0. */

*/

*/

COMPILER: Borland C++ Builder3 Standard version */
This compiler should be used to compile and link. */

131

* *
;**j
void CompareOrbit(struct Satellite &Sat,

struct Aircraft &Platform,
double ThetaGInRad,

int &OrbitInView,

double &CriticalRadius,
double &SatRadius,
ErrorStructure &ErrorList);

#endif

132

B.8 The ABLPA Preprocessor

The ABL Predictive Avoidance Preprocessor is the culmination of the modules
discussed in this chapter thus far. The purpose of the Predictive Avoidance Preprocessor
is to read the Two-Line Element (TLE) input file and screen it to pick out any satellites
which could not be within range of the ABL platform for a set time in the future. The
TLE set is an input file that contains a list of all satellites for which the user has a
concern. Each satellite is either in the ABL engagement area, or outside that area. The
preprocessor returns a shortened TLE input file that contains only those satellites that are

within the engagement area. Unfortunately, the Main Processor must execute very

quickly, in a real-time operational role. Therefore, the number of satellites that it needs

o No satelites n range No Erars
o

Figure B.7. The Graphical Interface to the Preprocessor

133

to procesé should be as small as possible. The preprocessor ensures that this is so. This
“screening”, in turn, reduces the execution time of the Main Processor. The execution
time of the preprocessor is not an issue, because the preprocessor can be run at any time,
and there is no need to run the preprocessor in a given time slot. Despite this fact, the
ABLPA preprocessor generally runs in under one second. This time estimate is for
running with a standard desktop 200 MHz computer. The Graphical Interface developed
for the Preprocessor is shown in Figure B.7. Of course, as with all of the modules
described in this chapter, the user of these libraries could easily create their own
graphical (or non-graphical) interface, designed to their own tastes. This interface is
simply provided to make use of the preprocessor more convenient. Notice that most of
the input and output is handled via TLE files. The format of a standard TLE file is given
in Appendix F. The final output file resulting from the run of the preprocessor will serve
as input file for the Main Processor. The next chapter will describe the nature of the

Main Processor and the way in which this output file will be put to use.

B.8.1 Inputs

char InFileName [MAXNAMELENGTH] This parameter holds the name of
the Two Line Element Set that holds the satellites to be evaluated.

char OutFileName [MAXNAMELENGTH] Holds the name of the file to
which the output satellites” Two-Line Element set information is routed to. This
file holds all of the satellites that have been judged by the Preprocessor to be “in
view” of the platform.

struct Aircraft &ABLPlatform ABLPlatform is a structure of type
“Aircraft” that holds all of the information about the position of the aircraft at the
time of execution of the Preprocessor.

int ReferenceHour Reference hour Refers to the Reference angle of 0
(The angle between the Greenwich meridian and the Vernal Equinox). This

134

angles is given in hours, minutes and seconds as opposed to degrees or radians.
This parameter holds the hours portion of 6

int ReferenceMinute The minutes portion of 6,
double ReferenceSecond The seconds portion of O

double RefModJulianDate This parameter holds the Modified Julian
Date at which the reference angle, 8;, was taken. This allows 6, to be propagated
forward to the present moment.

int CalcYear The current year.

int CalcMonth The current month (1-12).
int Calcbay The current day (1-31).

int CalcHour The current hour (1-24).

int CalcMinute The current minute (1-60).

double CalcSecond The current second. This is the only part of the
current time that can be given as a non-integer. This field should be accurate to
at least three decimal places.

double TimeToNextRun The estimated time until the next run of the
Preprocessor.

ErrorStructure &ErrorList This parameter is both an input and
output parameter. Each module uses it to assess whether a fatal error has
occurred somewhere else in the program, and uses it to record errors that may be
important to the user.

B.8.2 Outputs

int &InFileLength This parameter tells the user how many

elements were read in from the file specified by the input parameter
“InFileName[MAXNAMELENGTH]”. This is the total number of satellites that
were evaluated during the run of the Preprocessor.

int &OutFileLength This parameter tells the user how many
elements were written to the file specified by the input parameter
“OutFileName[MAXNAMELENGTH]”. This is the total number of satellites
that were judged to be “in-view” of the platform between the time of the run and
the next run of the preprocessor.

135

double &ThetaGInDegrees This is the instantaneous angle between the
Greenwich meridian and the Vernal Eqinox at the moment of execution of the
preprocessor.

ErrorStructure &ErrorList This parameter is both an input and
output parameter. Each module uses it to assess whether a fatal error has
occurred somewhere else in the program, and uses it to record